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Standard Bayesian joint model formulation

Longitudinal submodel

yi(t | bi,8y) ~ Exp-Family (u;(t | bi, 6,))
(b; | 8) ~ Normal(0, X)

Survival submodel

hi(t | b, 0,,05) = ho(t | 05) exp {xh +agi(t | b, oy)}

Priors
Independent and weakly-informative

Common specifications for y;(¢ | -) and g;(¢ | -):
> pi(t|): x! (B +z (t)b; [Exp-Family = Normal].
v ®ogi(t] ) pa(t]), dpa(t])/dt and g o | )dt.
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Joint specification (JS) approach

Full joint probability distribution
f(y7 s, b, 0y7 0, ab) = f(ya S | b, ay’ es)f(b ’ ob)ﬂ'(ey)ﬂ'(es)ﬂ'(ab)
» y: longitudinal process with parameter vector 6.

» s: survival process with parameter vector 6.

» b: random effects with parameter vector 6.
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Shared-parameter factorisation

f(y7s ‘ b‘/ 93/705) = f(y ‘ b7 0y)f<8 | b7 Oyvos)



Standard two-stage (STS) approach

> Stage 1:

MAP = (5,0,) = max { /(5 | 5,6, (b | 60)m(6,)m(81) |
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Novel two-stage (NTS) approach

> Stage 1:

MAP = (6,,6,) = puas { (5 | b,0,)/ (b | 6,)7(6,)7(6,) }
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> Stage 1:
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Novel two-stage (NTS) approach

n
S}
(TN

N

Proposition

For fixed sample size n, and as the number n; of repeated mea-
surements per individual in the longitudinal process y increases,
the mazimum a posteriori (MAP) of 6, and 65 from the joint

specification (JS) and novel two-stage (NTS) approaches will
closely resemble.
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Joint model simulation algorithm

1: Initialisation: Set 6,, 0, 0y, n, A, and tax.

2: Simulating survival data:
— Simulate z; ~ Bernoulli(0.5) and b; ~ Normal(0, X) Vi.
— Calculate 77" Vi based on the survival submodel.
— Simulate C; ~ Uniform(0, tyax) Vi.
- Set T; = min{T},C;} and ¢; = (T} < C;) Vi.

3: Simulating longitudinal data:
—Set 0 =ty,...,t,, <T;Visuch that t;;1 —t; = A.
— Compute y;(t1), . - -, yi(tn,) Vi based on the longitudinal submodel.
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Exponential family specifications

Longitudinal continuous outcome
y;(t | b;, 0,) ~ Normal (1, (t | biﬁy),az)
wi(t | bi, 0y) = Bo + boi + (81 + bui)t + Pax;

Longitudinal count outcome
yi(t | b;, 0,) ~ Poisson(u;(t | b;, 6,))
log (1(t | bi, 0y)) = Bo + boi + (B + bui)t + Pax;

Longitudinal binary outcome
yi(t | b;,0,) ~ Bernoulli(u;(t | b;,6,))
logit (11 (t | bi, 0y)) = Bo + boi + (B1 + bri)t + Pax;

Survival outcome
1, hz(t | bi7 0y7 08) = ¢t¢_1 eXp {’70 + iz + aﬂz(t | bi7 ey)}
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Setting parameters

For each scenario (Normal, Poisson, and Bernoulli),
datasets with n = 500, A = 1, and ¢, = 20.

we simulated 300

Scenario S b1 Bo o Y1 Yo %o ge! ¢ a

Normal -1.00 -0.10 -0.30 0.30 0.10 0.01 -1.00 -0.50 2.50 2.00
Poisson -1.00 0.03 0.50 — 0.05 0.01 -7.00 -0.50 5.00 -2.00
Bernoulli -3.00 2.00 -5.00 - 10.00 2.00 -3.00 -1.00 1.50 3.00
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Number of longitudinal observations

» 26%-40% (Normal), 22%-35% (Poisson), and 16%-27% (Bernoulli).



MCMC configuration and running time

Joint specification (JS):
» 2000 iterations with warm-up of 1000.

Novel two-stage (NTS) and standard two-stage (STS):
» Longitudinal submodel: 2000 iterations with warm-up of 1000.

» Survival submodel: 1000 iterations with warm-up of 500.



MCMC configuration and running time

Joint specification (JS):
» 2000 iterations with warm-up of 1000.

Novel two-stage (NTS) and standard two-stage (STS):
» Longitudinal submodel: 2000 iterations with warm-up of 1000.

» Survival submodel: 1000 iterations with warm-up of 500.

Scenario JS NTS STS
Normal 5.65 2.70 1.65
Poisson  7.68 5.90 2.10
Bernoulli 8.45 4.25 1.38




Posterior inference for the group parameter (1)
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Posterior inference for the association parameter ()
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Remarks

» Novel two-stage (NTS) simplifies the complex nature of joint
specification (JS) by using a two-stage strategy that at the
same time corrects the well-known bias of a standard two-
stage (STS) approach.
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Novel two-stage (NTS) simplifies the complex nature of joint
specification (JS) by using a two-stage strategy that at the
same time corrects the well-known bias of a standard two-
stage (STS) approach.

NTS asymptotically resembles a joint inference.

The group parameter was not significantly affected by the
use of two-stage approaches.

The association parameter was biased using STS. This issue
was mitigated by replacing STS with NTS.

In all scenarios, NTS had a much lower computational time
than the JS approach.
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» Novel two-stage (NTS) simplifies the complex nature of joint

specification (JS) by using a two-stage strategy that at the
same time corrects the well-known bias of a standard two-
stage (STS) approach.

NTS asymptotically resembles a joint inference.

The group parameter was not significantly affected by the
use of two-stage approaches.

The association parameter was biased using STS. This issue
was mitigated by replacing STS with NTS.

In all scenarios, NTS had a much lower computational time
than the JS approach.

NTS can be easily generalised to more complex longitudinal
and survival submodels.



Thank you for your attention!
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