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Standard Bayesian joint model formulation

Longitudinal submodel

yi(t | bi,θy) ∼ Exp-Family
(
µi(t | bi,θy)

)
(bi | θb) ∼ Normal(0,Σ)

Survival submodel

hi(t | bi,θy,θs) = h0(t | θs) exp
{
x⊤
i γ + αgi(t | bi,θy)

}
Priors

Independent and weakly-informative

Common specifications for µi(t | ·) and gi(t | ·):
▶ µi(t | ·): x⊤

i (t)β + z⊤
i (t)bi [Exp-Family = Normal].

▶ gi(t | ·): µi(t | ·), dµi(t | ·)/dt and
∫ t
0 µi(v | ·)dt.
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Joint specification (JS) approach

Full joint probability distribution

f(y, s, b,θy,θs,θb) = f(y, s | b,θy,θs)f(b | θb)π(θy)π(θs)π(θb)

▶ y: longitudinal process with parameter vector θy.

▶ s: survival process with parameter vector θs.

▶ b: random effects with parameter vector θb.

Shared-parameter factorisation

f(y, s | b,θy,θs) = f(y | b,θy)f(s | b,θy,θs)
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Standard two-stage (STS) approach

▶ Stage 1:

MAP ≡ (b̂, θ̂y) = max
b,θy

{
f(y | b,θy)f(b | θb)π(θy)π(θb)

}

▶ Stage 2:

π(θs | data) ∝ f(s | b̂, θ̂y,θs)π(θs)
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Novel two-stage (NTS) approach

▶ Stage 1:

MAP ≡ (θ̂y, θ̂b) = max
θy ,θb

{
f(y | b,θy)f(b | θb)π(θy)π(θb)

}
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Novel two-stage (NTS) approach

Proposition

For fixed sample size n, and as the number ni of repeated mea-
surements per individual in the longitudinal process y increases,
the maximum a posteriori (MAP) of θy and θs from the joint
specification (JS) and novel two-stage (NTS) approaches will
closely resemble.
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Joint model simulation algorithm

1: Initialisation: Set θy, θs, θb, n, ∆, and tmax.

2: Simulating survival data:

– Simulate xi ∼ Bernoulli(0.5) and bi ∼ Normal(0,Σ)∀i.
– Calculate T ∗

i ∀i based on the survival submodel.

– Simulate Ci ∼ Uniform(0, tmax)∀i.
– Set Ti = min{T ∗

i , Ci} and δi = I(T ∗
i ≤ Ci)∀i.

3: Simulating longitudinal data:

– Set 0 = t1, . . . , tni
≤ Ti ∀i such that tj+1 − tj = ∆.

– Compute yi(t1), . . . , yi(tni
)∀i based on the longitudinal submodel.

12



Exponential family specifications

Longitudinal continuous outcome

yi(t | bi,θy) ∼ Normal
(
µi(t | bi,θy), σ2

)
µi(t | bi,θy) = β0 + b0i + (β1 + b1i)t+ β2xi

Longitudinal count outcome

yi(t | bi,θy) ∼ Poisson
(
µi(t | bi,θy)

)
log

(
µi(t | bi,θy)

)
= β0 + b0i + (β1 + b1i)t+ β2xi

Longitudinal binary outcome

yi(t | bi,θy) ∼ Bernoulli
(
µi(t | bi,θy)

)
logit

(
µi(t | bi,θy)

)
= β0 + b0i + (β1 + b1i)t+ β2xi

Survival outcome

hi(t | bi,θy,θs) = ϕ tϕ−1 exp {γ0 + γ1xi + αµi(t | bi,θy)}
13



Setting parameters

For each scenario (Normal, Poisson, and Bernoulli), we simulated 300
datasets with n = 500, ∆ = 1, and tmax = 20.

Scenario β0 β1 β2 σ Σ11 Σ22 γ0 γ1 ϕ α
Normal -1.00 -0.10 -0.30 0.30 0.10 0.01 -1.00 -0.50 2.50 2.00
Poisson -1.00 0.03 0.50 – 0.05 0.01 -7.00 -0.50 5.00 -2.00
Bernoulli -3.00 2.00 -5.00 – 10.00 2.00 -3.00 -1.00 1.50 3.00

Censoring rates:

▶ 26%-40% (Normal), 22%-35% (Poisson), and 16%-27% (Bernoulli).
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MCMC configuration and running time

Joint specification (JS):

▶ 2000 iterations with warm-up of 1000.

Novel two-stage (NTS) and standard two-stage (STS):

▶ Longitudinal submodel: 2000 iterations with warm-up of 1000.

▶ Survival submodel: 1000 iterations with warm-up of 500.

Scenario JS NTS STS
Normal 5.65 2.70 1.65
Poisson 7.68 5.90 2.10
Bernoulli 8.45 4.25 1.38
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Posterior inference for the group parameter (γ1)
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Posterior inference for the association parameter (α)
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Remarks

▶ Novel two-stage (NTS) simplifies the complex nature of joint
specification (JS) by using a two-stage strategy that at the
same time corrects the well-known bias of a standard two-
stage (STS) approach.

▶ NTS asymptotically resembles a joint inference.

▶ The group parameter was not significantly affected by the
use of two-stage approaches.

▶ The association parameter was biased using STS. This issue
was mitigated by replacing STS with NTS.

▶ In all scenarios, NTS had a much lower computational time
than the JS approach.

▶ NTS can be easily generalised to more complex longitudinal
and survival submodels.
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Thank you for your attention!

E-mail: danilo.alvares@mrc-bsu.cam.ac.uk

R codes
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