Joint specification of generalised linear mixed and time-to-event models: A robust two-stage approach

Danilo Alvares

MRC Biostatistics Unit, University of Cambridge

Joint work with Valeria Leiva-Yamaguchi

Joint modelling

Estimation approaches

Simulation study

Joint modelling

Estimation approaches

Simulation study

Joint modelling literature

Alvares, Andrinopoulou, Armero, Asar, Barrett, Brilleman, Brown, Cadarso-Suárez, Cekic, Chen, Crowther, Davidian, Diggle, Elashoff, Ibrahim, Jacqmin-Gadda, Lambert, Li, McCulloch, Molenberghs, Proust-Lima, Rizopoulos, Rondeau, Rustand, Sandler, Sinha, Sousa, Taylor, Tsiatis, van Niekerk, Wulfsohn, ...

Joint modelling literature

Alvares, Andrinopoulou, Armero, Asar, Barrett, Brilleman, Brown, Cadarso-Suárez, Cekic, Chen, Crowther, Davidian, Diggle, Elashoff, Ibrahim, Jacqmin-Gadda, Lambert, Li, McCulloch, Molenberghs, Proust-Lima, Rizopoulos, Rondeau, Rustand, Sandler, Sinha, Sousa, Taylor, Tsiatis, van Niekerk, Wulfsohn, ...

Standard Bayesian joint model formulation

Longitudinal submodel

$$y_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y) \sim \text{Exp-Family} \big(\mu_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y) \big)$$
$$(\boldsymbol{b}_i \mid \boldsymbol{\theta}_b) \sim \text{Normal}(\boldsymbol{0}, \boldsymbol{\Sigma})$$

Survival submodel

$$h_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y, \boldsymbol{\theta}_s) = h_0(t \mid \boldsymbol{\theta}_s) \exp\left\{\boldsymbol{x}_i^\top \boldsymbol{\gamma} + \alpha g_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y)\right\}$$

Priors

Independent and weakly-informative

Common specifications for $\mu_i(t \mid \cdot)$ and $g_i(t \mid \cdot)$:

 $\mu_i(t \mid \cdot): \quad \boldsymbol{x}_i^{\top}(t)\boldsymbol{\beta} + \boldsymbol{z}_i^{\top}(t)\boldsymbol{b}_i \quad \text{[Exp-Family = Normal]}.$ $\boldsymbol{p}_i(t \mid \cdot): \quad \mu_i(t \mid \cdot), \quad d\mu_i(t \mid \cdot)/dt \quad \text{and} \quad \int_0^t \mu_i(v \mid \cdot)dt.$

Joint modelling

Estimation approaches

Simulation study

Joint specification (JS) approach

Full joint probability distribution

 $f(\boldsymbol{y}, \boldsymbol{s}, \boldsymbol{b}, \boldsymbol{\theta}_y, \boldsymbol{\theta}_s, \boldsymbol{\theta}_b) = f(\boldsymbol{y}, \boldsymbol{s} \mid \boldsymbol{b}, \boldsymbol{\theta}_y, \boldsymbol{\theta}_s) f(\boldsymbol{b} \mid \boldsymbol{\theta}_b) \pi(\boldsymbol{\theta}_y) \pi(\boldsymbol{\theta}_s) \pi(\boldsymbol{\theta}_b)$

- ▶ y: longitudinal process with parameter vector θ_y .
- ▶ s: survival process with parameter vector θ_s .
- ▶ **b**: random effects with parameter vector $\boldsymbol{\theta}_b$.

Joint specification (JS) approach

Full joint probability distribution

 $f(\boldsymbol{y}, \boldsymbol{s}, \boldsymbol{b}, \boldsymbol{\theta}_y, \boldsymbol{\theta}_s, \boldsymbol{\theta}_b) = \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{s} \mid \boldsymbol{b}, \boldsymbol{\theta}_y, \boldsymbol{\theta}_s) f(\boldsymbol{b} \mid \boldsymbol{\theta}_b) \pi(\boldsymbol{\theta}_y) \pi(\boldsymbol{\theta}_s) \pi(\boldsymbol{\theta}_b)$

y: longitudinal process with parameter vector θ_y.
s: survival process with parameter vector θ_s.

▶ **b**: random effects with parameter vector $\boldsymbol{\theta}_b$.

Shared-parameter factorisation

 $f(\boldsymbol{y}, \boldsymbol{s} \mid \boldsymbol{b}, \boldsymbol{\theta}_y, \boldsymbol{\theta}_s) = f(\boldsymbol{y} \mid \boldsymbol{b}, \boldsymbol{\theta}_y) f(\boldsymbol{s} \mid \boldsymbol{b}, \boldsymbol{\theta}_y, \boldsymbol{\theta}_s)$

Standard two-stage (STS) approach

► Stage 1:

$$MAP \equiv (\hat{\boldsymbol{b}}, \hat{\boldsymbol{\theta}}_y) = \max_{\boldsymbol{b}, \boldsymbol{\theta}_y} \left\{ f(\boldsymbol{y} \mid \boldsymbol{b}, \boldsymbol{\theta}_y) f(\boldsymbol{b} \mid \boldsymbol{\theta}_b) \pi(\boldsymbol{\theta}_y) \pi(\boldsymbol{\theta}_b) \right\}$$

Standard two-stage (STS) approach

► Stage 1:

$$MAP \equiv (\hat{\boldsymbol{b}}, \hat{\boldsymbol{\theta}}_y) = \max_{\boldsymbol{b}, \boldsymbol{\theta}_y} \left\{ f(\boldsymbol{y} \mid \boldsymbol{b}, \boldsymbol{\theta}_y) f(\boldsymbol{b} \mid \boldsymbol{\theta}_b) \pi(\boldsymbol{\theta}_y) \pi(\boldsymbol{\theta}_b) \right\}$$

$$\pi(\boldsymbol{\theta}_s \mid \text{data}) \propto f(\boldsymbol{s} \mid \hat{\boldsymbol{b}}, \hat{\boldsymbol{\theta}}_y, \boldsymbol{\theta}_s) \pi(\boldsymbol{\theta}_s)$$

Novel two-stage (NTS) approach

► Stage 1:

$$MAP \equiv (\hat{\boldsymbol{\theta}}_{y}, \hat{\boldsymbol{\theta}}_{b}) = \max_{\boldsymbol{\theta}_{y}, \boldsymbol{\theta}_{b}} \left\{ f(\boldsymbol{y} \mid \boldsymbol{b}, \boldsymbol{\theta}_{y}) f(\boldsymbol{b} \mid \boldsymbol{\theta}_{b}) \pi(\boldsymbol{\theta}_{y}) \pi(\boldsymbol{\theta}_{b}) \right\}$$

Novel two-stage (NTS) approach

► Stage 1:

$$MAP \equiv (\hat{\boldsymbol{\theta}}_{y}, \hat{\boldsymbol{\theta}}_{b}) = \max_{\boldsymbol{\theta}_{y}, \boldsymbol{\theta}_{b}} \left\{ f(\boldsymbol{y} \mid \boldsymbol{b}, \boldsymbol{\theta}_{y}) f(\boldsymbol{b} \mid \boldsymbol{\theta}_{b}) \pi(\boldsymbol{\theta}_{y}) \pi(\boldsymbol{\theta}_{b}) \right\}$$

► Stage 2:

 $\pi(\boldsymbol{b}, \boldsymbol{\theta}_s \mid \text{data}) \propto f(\boldsymbol{y} \mid \boldsymbol{b}, \hat{\boldsymbol{\theta}}_y) f(\boldsymbol{s} \mid \boldsymbol{b}, \hat{\boldsymbol{\theta}}_y, \boldsymbol{\theta}_s) f(\boldsymbol{b} \mid \hat{\boldsymbol{\theta}}_b) \pi(\boldsymbol{\theta}_s)$

Novel two-stage (NTS) approach

Proposition

For fixed sample size n, and as the number n_i of repeated measurements per individual in the longitudinal process \boldsymbol{y} increases, the maximum a posteriori (MAP) of $\boldsymbol{\theta}_y$ and $\boldsymbol{\theta}_s$ from the joint specification (JS) and novel two-stage (NTS) approaches will closely resemble.

Joint modelling

Estimation approaches

Simulation study

Joint model simulation algorithm

1: Initialisation: Set θ_y , θ_s , θ_b , n, Δ , and t_{max} .

2: Simulating survival data:

- Simulate $x_i \sim \text{Bernoulli}(0.5)$ and $b_i \sim \text{Normal}(\mathbf{0}, \boldsymbol{\Sigma}) \forall i$.
- Calculate $T_i^* \forall i$ based on the survival submodel.
- Simulate $C_i \sim \text{Uniform}(0, t_{\text{max}}) \forall i$.
- Set $T_i = \min\{T_i^*, C_i\}$ and $\delta_i = I(T_i^* \le C_i) \forall i$.

3: Simulating longitudinal data:

- Set $0 = t_1, \ldots, t_{n_i} \leq T_i \forall i$ such that $t_{j+1} t_j = \Delta$.
- Compute $y_i(t_1), \ldots, y_i(t_{n_i}) \forall i$ based on the longitudinal submodel.

Exponential family specifications

Longitudinal continuous outcome $y_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y) \sim \text{Normal}(\mu_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y), \sigma^2)$ $\mu_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y) = \beta_0 + b_{0i} + (\beta_1 + b_{1i})t + \beta_2 x_i$

Longitudinal count outcome $y_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y) \sim \text{Poisson}(\mu_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y))$ $\log(\mu_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y)) = \beta_0 + b_{0i} + (\beta_1 + b_{1i})t + \beta_2 x_i$

Longitudinal binary outcome $y_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y) \sim \text{Bernoulli}(\mu_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y))$ $\text{logit}(\mu_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y)) = \beta_0 + b_{0i} + (\beta_1 + b_{1i})t + \beta_2 x_i$

Survival outcome

$$h_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y, \boldsymbol{\theta}_s) = \phi t^{\phi-1} \exp\left\{\gamma_0 + \gamma_1 x_i + \boldsymbol{\alpha} \mu_i(t \mid \boldsymbol{b}_i, \boldsymbol{\theta}_y)\right\}$$

Setting parameters

For each scenario (Normal, Poisson, and Bernoulli), we simulated 300 datasets with n = 500, $\Delta = 1$, and $t_{\text{max}} = 20$.

Scenario	β_0	β_1	β_2	σ	Σ_{11}	Σ_{22}	γ_0	γ_1	ϕ	α
Normal	-1.00	-0.10	-0.30	0.30	0.10	0.01	-1.00	-0.50	2.50	2.00
Poisson	-1.00	0.03	0.50	_	0.05	0.01	-7.00	-0.50	5.00	-2.00
Bernoulli	-3.00	2.00	-5.00	-	10.00	2.00	-3.00	-1.00	1.50	3.00

Setting parameters

For each scenario (Normal, Poisson, and Bernoulli), we simulated 300 datasets with n = 500, $\Delta = 1$, and $t_{\text{max}} = 20$.

Scenario	β_0	β_1	β_2	σ	Σ_{11}	Σ_{22}	γ_0	γ_1	ϕ	α
Normal	-1.00	-0.10	-0.30	0.30	0.10	0.01	-1.00	-0.50	2.50	2.00
Poisson	-1.00	0.03	0.50	—	0.05	0.01	-7.00	-0.50	5.00	-2.00
Bernoulli	-3.00	2.00	-5.00	-	10.00	2.00	-3.00	-1.00	1.50	3.00

Setting parameters

For each scenario (Normal, Poisson, and Bernoulli), we simulated 300 datasets with n = 500, $\Delta = 1$, and $t_{\text{max}} = 20$.

Scenario	β_0	β_1	β_2	σ	Σ_{11}	Σ_{22}	γ_0	γ_1	ϕ	α
Normal	-1.00	-0.10	-0.30	0.30	0.10	0.01	-1.00	-0.50	2.50	2.00
Poisson	-1.00	0.03	0.50	_	0.05	0.01	-7.00	-0.50	5.00	-2.00
Bernoulli	-3.00	2.00	-5.00	_	10.00	2.00	-3.00	-1.00	1.50	3.00

Censoring rates: 26%-40% (Normal), 22%-35% (Poisson), and 16%-27% (Bernoulli). MCMC configuration and running time

Joint specification (JS):

▶ 2000 iterations with warm-up of 1000.

Novel two-stage (NTS) and standard two-stage (STS):

- ▶ Longitudinal submodel: 2000 iterations with warm-up of 1000.
- ▶ Survival submodel: 1000 iterations with warm-up of 500.

MCMC configuration and running time

Joint specification (JS):

▶ 2000 iterations with warm-up of 1000.

Novel two-stage (NTS) and standard two-stage (STS):

- ▶ Longitudinal submodel: 2000 iterations with warm-up of 1000.
- ▶ Survival submodel: 1000 iterations with warm-up of 500.

Scenario	$_{\rm JS}$	NTS	STS
Normal	5.65	2.70	1.65
Poisson	7.68	5.90	2.10
Bernoulli	8.45	4.25	1.38

Posterior inference for the group parameter (γ_1)

Posterior inference for the association parameter (α)

Outline

Joint modelling

Estimation approaches

Simulation study

Novel two-stage (NTS) simplifies the complex nature of joint specification (JS) by using a two-stage strategy that at the same time corrects the well-known bias of a standard twostage (STS) approach.

- Novel two-stage (NTS) simplifies the complex nature of joint specification (JS) by using a two-stage strategy that at the same time corrects the well-known bias of a standard twostage (STS) approach.
- ▶ NTS asymptotically resembles a joint inference.

- Novel two-stage (NTS) simplifies the complex nature of joint specification (JS) by using a two-stage strategy that at the same time corrects the well-known bias of a standard twostage (STS) approach.
- ▶ NTS asymptotically resembles a joint inference.
- ▶ The group parameter was not significantly affected by the use of two-stage approaches.

- Novel two-stage (NTS) simplifies the complex nature of joint specification (JS) by using a two-stage strategy that at the same time corrects the well-known bias of a standard twostage (STS) approach.
- ▶ NTS asymptotically resembles a joint inference.
- ▶ The group parameter was not significantly affected by the use of two-stage approaches.
- ▶ The association parameter was biased using STS. This issue was mitigated by replacing STS with NTS.

- Novel two-stage (NTS) simplifies the complex nature of joint specification (JS) by using a two-stage strategy that at the same time corrects the well-known bias of a standard twostage (STS) approach.
- ▶ NTS asymptotically resembles a joint inference.
- ▶ The group parameter was not significantly affected by the use of two-stage approaches.
- ▶ The association parameter was biased using STS. This issue was mitigated by replacing STS with NTS.
- In all scenarios, NTS had a much lower computational time than the JS approach.

- Novel two-stage (NTS) simplifies the complex nature of joint specification (JS) by using a two-stage strategy that at the same time corrects the well-known bias of a standard twostage (STS) approach.
- ▶ NTS asymptotically resembles a joint inference.
- ▶ The group parameter was not significantly affected by the use of two-stage approaches.
- ▶ The association parameter was biased using STS. This issue was mitigated by replacing STS with NTS.
- In all scenarios, NTS had a much lower computational time than the JS approach.

Thank you for your attention!

²⁰ **E-mail:** danilo.alvares@mrc-bsu.cam.ac.uk