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Motivation
Bazán, Romeo and Rodrigues (2014): whether the Warsaw girls was menstruating
already (class 1) or not (class 0), where class 1 = 58.9%.

Bazán et al. (2017): full coverage plan for vehicle insurance (full coverage plan =
class 1 and not full coverage plan = class = 0), where class 1 = 34.7%

Lemonte and Bazán (2018): eradicating the coca cultivation (erad = class 1 and
no erad = class 0), where class 1 = 58%

Huayanay et al. (2019): quality of the white vinho branco from Portugal (good
quality = class 1 and poor quality = class 0), where class 1 = 21.6%

SILVA, ANYOSA and BAZAN (2020): distinction between oral (class 1) and nasal
(class 0) sounds, where class 1 = 70.6%. Performance level in mathematics (ad-
equate = class 1 and no adequate = class 0), where class 1 = 9.8%

Huayanay, Bazán and Deniz (2023): the presence of schizophrenia symptoms (class
1) or not (class 0), where class 1 = 31%.
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1. INTRODUCTION
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1. Introduction

Binary classification models intend to assign an individual or observation to one of
two categories or classes, based on a set of attributes.

There are a number of methods proposed to perform classification, the most used
method is logistic regression which uses a link function called logit

In binary classification, imbalanced data result from the presence of values equal to
one (or zero) in a proportion that is significantly less than the corresponding real
values of zero (or one).

In the literature there are some solutions to deal with imbalanced data: correction,
asymmetrical links and sampling methods
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1.1. Tactics To Combat Imbalanced in Statistics

In the presence of imbalanced data
Fatourechi et al. (2008), Luque et al. (2019) shown that the binary regression model
with the symmetric link, is unsuitable and some metrics may be inappropriate.

Firth (1993), King and Zeng (2001) propose correction or reduction of bias to the
logistic model

Chen, Dey and Shao (1999), Wang and Dey (2011), Yin et al. (2020): Binary
regression considering different assymetrical link functions.

Nguyen, Zeno and Lars (2011), Hlosta et al. (2013), Huayanay et al. (2019): use
of other metrics to assess the predictive capacity of the model.

Bazán et al. (2017), Lemonte and Bazán (2018): Power and reversal power links
for binary regressions.
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1.2. Tactics To Combat Imbalanced in Machine Learning

Fernández et al. (2019) and others:
Can You Collect More Data?

Try Changing Your Performance Metric

Try Resampling Your Dataset

Try Generate Synthetic Samples

Try Different Algorithms

Try Penalized Models

Try a Different Perspective

Try Getting Creative
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1.3. Objectives

Introduce some of our binary regression models using asymmetric links proposed for
when the data set is imbalanced which is an supervised machine learning models
are alternative to logistic regression algorithm.

Evaluate methods developed to deal with imbalanced data and compare them our
proposed.

Study the performance of metrics in imbalanced data using power and reverse power
links.
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2. POWER AND REVERSE POWER DISTRIBUTION
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2. Power and reverse power distribution
According to Bazán et al. (2017)

Definition 1
A random variable Z is said to follow a power and reverse power distribution, in its
standard form, when its CDF has the following form, respectively

FP (z) = G (z)α and FRP (z) = 1−G (−z)α , z ∈ R,

where α is a shape parameter and with G(·) denoting a CDF of baseline distribution
with support in the real line.

We use the notation Fl(·) refer to the cumulative density function of power or reverse
power distribution, where l = P , RP
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The probability density functions (PDF): fP (z) = αG(z)α−1g(z) and fRP (z) =
αG(−z)α−1g(z), where g(·) is a PDF of the corresponding baseline distribution
and z ∈ R.

The quantiles can be written as: QP (p) = G−1
(
−p1/α

)
and QRP (p) = 1 −

G−1
(
−(1− p)1/α

)
= −QP (1− p), where p is a given probability.
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2.1 Some distributions:

Bazán, Romeo and Rodrigues (2014)
Bazán et al. (2017),
Chumbimune (2017),
Lemonte and Bazán (2018)
Huayanay et al. (2019)
Huayanay (2019)
Huayanay, Bazán and Russo (2023)
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Distribution and notation
Power Logistic: PL
Reverse Power Logistic: RPL
Power Normal: PN
Reverse Power Normal: RPN
Power Cauchy: PC
Reverse Power Cauchy: RPC
Power Reverse Gumbel: PRG
Reverse Power Reverse Gumbel: RPRG
Power Laplace: PLA
Reverse Power Laplace: RPLA
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Table 1: CDF, PDF and QF of P and RP link functions
Distribution CDF : Fα(ηi) PDF: fα(ηi) QF: Q(pi, α)
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Figure 1: Density of probabilities of Cauchy, PC and RPC distribution with α = 0.5 (left) and
α = 3 (right).
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Figure 2: Curve of probabilities of Cauchy, PC and RPC distribution with α = 0.5 (left) and
α = 3 (right).
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Proposition 1

Let U ∼ Uniform(0, 1) be, then X = QP (U) = G−1(U1/α) follow the P distribution
and X = QRP (U) = −G−1((1− U)1/α) follow the RP distribution, where QP (U) and
QP (U) are the values of the quantiles for U generated respectively by FP (·) and
FRP (·).

This is a direct consequence of the definition of this class of distributions and of that
for continuous distributions, Fl(X) = U follows a continuous uniform distribution
(ROSS, 2006).
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2.3. Skewness and Kurtosis

Octile skewness coefficient : AO(α) = (O7−O4)−(O4−O1)
O7−O1

in Brys, Hubert and Struyf
(2004), where Oa denote the ath octile.

Kurtosis coefficient: KO = (O7−O5)+(O3−O1)
O6−O2

in Moors (1988)

In Power and Reverse Power distribution:

AO(α) = Q(0.875,α)−2Q(0.5,α)+Q(0.125,α)
Q(0.875,α)−Q(0.125,α)

KO(α) = 100
1.233 ×

[
Q(0.875,α)−Q(0.625,α)+Q(0.375,α)−Q(0.125,α)

Q(0.75,α)−Q(0.25,α) − 1.233
]

we use the kurtosis value of the Normal (1.233) for rescale this measure. AO(α) and
KO(α) depend of α parameter, Q(p, α) is the quantile function and 0 < AO < 1.
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Table 2: Skewness AO(α) for power distributions and reversal power distributions considering
values between α = 0.001 and α = 9999.

AO(α)
Distribution Min. Max. 0 < α < 1 α ≥ 1 r *

PL -0.4248 0.1997 (-0.4248, 0.0000) [0.0000, 0.1997) 0.6245
RPL -0.1997 0.4248 (0.0000, 0.4248) [-0.1997, 0.0000) 0.6245
PN -0.1282 0.1617 (-0.1282, 0.0000) [0.0000, 0.1617) 0.2899
RPN -0.1617 0.1282 (0.0000, 0.1282) [-0.1617, 0.0000) 0.2899
PC -1.0000 0.7255 (-1.0000, 0.0000) [0.0000, 0.7255) 1.7255
RPC -0.7255 1.0000 (0.0000, 1.0000) [-0.7255, 0.0000) 1.7255
PRG -0.4219 0.1312 (-0.4219, -0.1998) [-0.1998, 0.1312) 0.5531
RPRG -0.1312 0.4219 (0.1998, 0.4219) [-0.1312, 0.1996) 0.5531
PLA -0.4248 0.2000 (-0.4248, 0.0000) [0.1998, 0.2000) 0.2248
RPLA -0.2000 0.4248 (0.0000, 0.4248) [-0.2000, -0.1998) 0.2248

* r = max.−min.
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Table 3: Kurtosis KO(α) for power and reverse power distributions considering values between
α = 0.001 and α = 9999.

Distribution
KO(α)

Min Max 0 < α < 1 α ≥ 1 r *

PL-RPL 3.6597 10.1144 (5.9426; 10.1144) (3.6597; 5.9423) 6.4547
PN-RPN -2.0454 1.9217 (-2.0454; 0.0077) (0.0078; 1.9217) 3.9671
PC-RPC 56.5886 37527838.9177 (62.2085; 37527838.9177) (56.5886; 73.7012) 37527782.3291

PRG-RPRG 0.2981 7.7168 (3.6582; 7.7168) (0.2981; 0.8706) 7.4187
PLA-RPLA 3.5934 28.8118 (5.9424; 28.8118) (3.5934; 3.6563) 25.2184

* r = max.−min.
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3. BINARY REGRESSION WITH P AND RP LINK
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3. Binary regression with P and RP link

Let Y = (Y1, . . . , Yn)> be an n×1 vector of independent response variables with values
1 or 0 and xi = (xi1, . . . , xip)> be the vector of covariates. The Bayesian model of
binary regression with power or reverse power link function can be given by

Yi | β, α
ind.∼ Bernoulli(pi)

pi = Fl(x>i β)
(β, α)> ∼ π (β, α)

(1)

Where Fl(·) is the P or RP distribution given in Table 1. As it was considered in Bazán
et al. (2017) and Huayanay et al. (2019):

β ∼ Np(0, Iσ2
β).

δ = log(α) ∼ U(−2, 2)
β and α are considered independent: π (β, α) = π (β)× π (α).
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Considering the prior specification here, the posterior distribution of θ = (β, α)>, π(θ |
y,X) has the following form

π(β, α | y,X) ∝
n∏
i=1

[
Fl
(
xi
>β
)]yi [1− Fl (xi>β)]1−yi p∏

j=1
exp

{
−

β2
j

2 (102)

}
1

4α

To estimate the parameters of the models, we use a proper code using the Stan language
through Python using the Pystan package.
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4. COMPARISON OF CORRECTIONS VS
ASYMMETRICAL LINKS
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4. Comparison of corrections vs Asymmetrical links

A simulation study was carried out to evaluate the performance of asymmetric ligations
for unbalanced data in comparison with the methods of Firth (1993) and King and Zeng
(2001).
The unbalanced data are generated from the model with Cauchy power link.

Yi ∼ Bernoulli (ui)

where
µi =

( 1
π

arctan (β1 + β2xi) + 1
2

)α
x ∼ U(−3, 3), β = (β1, β2)> = (0, 1)>, n = (500; 5000; 20000) e α = (1/4; 1/2; 2; 4)
this defines 12 scenarios, each one withM = 100 replicas.
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Note that the values of α = (1/4; 1/2; 2; 4) determines approximately the correspon-
dent observed proportions of ones p̂ = (0.20; 0.34; 0.67; 0.80). Then we fit the following
method for the simulated data

Logistic regression using glm in R.
Logistic regression with correction KZ (LogisticKZ) from King and Zeng (2001)
using Zelig in R.
Logistic regression with correction F (LogisticF) from Firth (1993) using LogisticF
in R.
Asymmetrical links studied here using Pystan (TEAM, 2017) on the interface be-
tween Stan and Python

The performance of the methods was determined based on a measure of bias and root
mean square error (RMSE) of the estimates over the replications.
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Table 4: β1 estimates for correction methods and using asymmetrical link functions by n
Bias n p = 0.20 p = 0.34 p = 0.67 p = 0.80

Estimate Bias RSME Estimate Bias RSME Estimate Bias RSME Estimate Bias RSME

Logistic
500 -2.457 -2.457 2.471 -1.168 -1.168 1.178 0.966 0.966 0.971 1.765 1.765 1.771
5000 -2.454 -2.454 2.454 -1.171 -1.171 1.172 0.934 0.934 0.934 1.748 1.748 1.748
20000 -2.429 -2.429 2.429 -1.172 -1.172 1.172 0.936 0.936 0.936 1.731 1.731 1.731

LogisticKZ
500 -2.377 -2.377 2.383 -1.144 -1.144 1.147 0.910 0.910 0.911 1.729 1.729 1.731
5000 -2.423 -2.423 2.424 -1.164 -1.164 1.164 0.940 0.940 0.941 1.736 1.736 1.736
20000 -2.454 -2.454 2.454 -1.175 -1.175 1.175 0.938 0.938 0.938 1.742 1.742 1.742

LogisticF
500 -2.369 -2.369 2.376 -1.147 -1.147 1.153 0.900 0.900 0.906 1.712 1.712 1.716
5000 -2.425 -2.425 2.425 -1.163 -1.163 1.164 0.931 0.931 0.932 1.735 1.735 1.736
20000 -2.446 -2.446 2.446 -1.173 -1.173 1.173 0.936 0.936 0.937 1.740 1.740 1.740

PL
500 0.635 0.635 0.637 0.557 0.557 0.561 -0.540 -0.540 0.571 0.519 0.519 0.526
5000 0.406 0.406 0.406 0.130 0.130 0.187 -0.187 -0.187 0.197 -0.289 -0.289 0.399
20000 -0.389 -0.389 0.399 0.124 0.124 0.182 -0.174 -0.174 0.176 -0.392 -0.392 0.394

PP
500 -1.008 -1.008 1.017 -1.080 -1.080 1.236 -0.198 -0.198 0.325 0.434 0.434 0.470
5000 0.326 0.326 0.329 0.582 0.582 0.615 -0.430 -0.430 0.514 0.084 0.084 0.209
20000 0.501 0.501 0.501 0.852 0.852 0.525 -0.502 -0.502 0.500 -0.219 -0.219 0.190

PLaplace
500 -0.190 -0.190 1.064 0.031 0.031 0.425 -0.393 -0.393 0.660 0.363 0.363 0.729
5000 0.150 0.150 0.185 0.048 0.048 0.103 0.657 0.657 0.657 0.545 0.545 0.640
20000 0.148 0.148 0.162 0.042 0.042 0.057 0.416 0.416 0.417 0.477 0.477 0.477

PC
500 -0.004 -0.004 0.067 0.029 0.029 0.073 -0.295 -0.295 0.308 0.381 0.381 0.534
5000 0.021 0.021 0.056 -0.013 -0.013 0.040 -0.022 -0.022 0.041 -0.071 -0.071 0.188
20000 -0.001 -0.001 0.023 0.014 0.014 0.018 -0.003 -0.003 0.041 -0.044 -0.044 0.085
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Table 5: β2 estimates for correction methods and using asymmetrical link functions by n
Method n

p = 0.20 p = 0.34 p = 0.67 p = 0.80
Estimate Bias RSME Estimate Bias RSME Estimate Bias RSME Estimate Bias RSME

Logistic
500 1.268 0.268 0.319 1.127 0.127 0.161 0.713 -0.287 0.303 0.633 -0.367 0.375
5000 1.254 0.254 0.257 1.094 0.094 0.100 0.703 -0.297 0.298 0.607 -0.393 0.394
20000 1.240 0.240 0.243 1.101 0.101 0.100 0.701 -0.299 0.300 0.608 -0.392 0.392

LogisticKZ
500 1.185 0.185 0.234 1.065 0.065 0.103 0.669 -0.331 0.338 0.616 -0.384 0.394
5000 1.229 0.229 0.235 1.093 0.093 0.099 0.714 -0.286 0.287 0.613 -0.387 0.388
20000 1.249 0.249 0.250 1.105 0.105 0.107 0.705 -0.295 0.295 0.618 -0.382 0.382

LogisticF
500 1.180 0.180 0.209 1.054 0.054 0.090 0.665 -0.335 0.342 0.606 -0.394 0.402
5000 1.229 0.229 0.232 1.089 0.089 0.096 0.713 -0.287 0.288 0.612 -0.388 0.389
20000 1.244 0.244 0.244 1.103 0.103 0.104 0.705 -0.295 0.295 0.617 -0.383 0.383

PL
500 0.771 -0.229 0.230 0.812 -0.188 0.189 1.109 0.109 0.119 0.888 -0.112 0.212
5000 0.858 -0.142 0.142 0.904 -0.096 0.110 0.923 -0.077 0.082 0.940 -0.060 0.107
20000 0.906 -0.094 0.097 0.913 -0.087 0.087 0.951 -0.049 0.064 0.980 -0.020 0.061

PP
500 0.873 -0.127 0.165 0.738 -0.262 0.284 0.567 -0.433 0.440 0.443 -0.557 0.559
5000 0.838 -0.562 0.162 0.429 -0.571 0.572 0.595 -0.405 0.409 0.499 -0.502 0.503
20000 0.852 -0.148 0.149 0.390 -0.610 0.567 0.607 -0.393 0.397 0.547 -0.453 0.454

PLaplace
500 0.688 -0.313 0.429 0.667 -0.333 0.346 0.815 -0.185 0.271 0.647 -0.353 0.382
5000 0.602 -0.398 0.398 0.613 -0.388 0.388 0.754 -0.246 0.246 0.573 -0.427 0.432
20000 0.596 -0.404 0.404 0.607 -0.393 0.393 0.755 -0.246 0.250 0.616 -0.384 0.384

PC
500 1.222 0.222 0.234 1.102 0.102 0.108 1.384 0.384 0.388 1.333 0.333 0.347
5000 1.049 0.049 0.062 1.009 0.009 0.016 1.037 0.037 0.064 1.024 0.024 0.101
20000 1.010 0.010 0.014 1.009 0.009 0.008 0.998 -0.002 0.020 1.005 0.005 0.047
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Figure 3: RMSE for β1 with different estimation methods and sample sizes.
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Figure 4: RMSE for β2 with different estimation methods and sample sizes.
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The Logistic regression model presents higher Bias and higher RMSE, which means
that it is not suitable for imbalanced data.
The correction methods from Firth (1993) and King and Zeng (2001) We present
better Estimates than the Logistic regression, but as the size of the sample increases,
the difference is not significant in relation to the RMSE and Bias.
The models with ligation power present the best performance, being the PC or
model that outperforms the others as the size of the sample increases or RMSE is
approximately zero.
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5. PERFOMANCE OF METRICS OF CLASSIFICATION
FOR IMBALANCED DATA
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5. Performance of metrics of classification for imbalanced data

The objective is to evaluate the performance metrics for binary regression in the
presence of imbalanced data

Yi ∼ Bernoulli (pi) , pi =
( 1
π

arctan (β1 + β2xi) + 1
2

)α

xi ∼ U(−2, 2)
β = (β1, β2)> = (−0.5, 1.5)>.
100 replications for different scenarios are realized:

2 sample sizes n = (5000; 10000)
α = 3 and α = 0.25 (p = 0.15 and p = 0.76 respectively)

Binary regression models with PC and L link were fitted for each data set.
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For each estimated model, in each replication, the confusion matrix was observed
and then the metrics were computed.
The confusion matrix was built considering an optimal value of threshold.
To decide what is the optimal threshold to be considered, we use the correspon-
dent threshold that produce the maximum Cohen’s kappa for the true model, as
suggested in Zou et al. (2016).
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Table 6: Metrics in binary classification
Metric Notation Formula Range

Accuracy ACC TP+TN
TP+TN+FP+FN [0; 1]

Sensitivity TPR TP
TP+FN [0; 1]

Specificity TNR TN
TN+FP [0; 1]

Critical success index CSI
TP

TP + FP + FN
[0; 1]

Sokal & Sneath index SSI
TP

TP + 2× FP + 2× FN [0; 1]

Faith index FAITH
TP + 0.5× TN

TP + FP + FN + TN
[0; 1]

Pattern difference PDIF
4× FP × FN

(TP + FP + FN + TN)2 [0; 1]

Gilbert skill score GS (TP×TN−FP×FN)
(FN+FP )(TP+FP+FN+TN)+(TP×TN−FP×FN) [0; 1]

Matthews Correlation Coefficient MCC (TP×TN−FP×FN)√
(FN+FP )(TP+FN)(TN+FP )(TN+FN)

[0; 1]

G-Mean GM
√
TPR× TNR [0; 1]

F1-score F1 2× TNR× TPR
TNR+ TPR

[0; 1]

Cohen’s kappa KAPPA 2×(TP×TN−FP×FN)
(TP+FP )(FP+TN)+(TP+FN)(FN+TN) [0; 1]
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The comparative performance of the metrics was determined based on the

Show the distance between the curves of the models based on the metric considered.
(Since that the PC is the true model we hope that the metric show a high distance
between the model with PC and logistic link).
Kolmogorov test to identify if the curves are differents: Dn,m = supx |F1,n(x) −
F2,m(x)|
(Since that the PC is the true model we hope reject the test that curve of metric
between the model with PC and logistic link are equals).
Proportion of times that the metric value PC model is better:
p̂ = 1

R

∑R
l=1 I

{
m

(r)
1 < m

(r)
2

}
(Since that the PC is the true model we hope the metric chose the true model
between the model with PC and logistic link in 100% of the times).
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where m(r)
1 and m

(r)
1 are metric values for two different models, F1,n and F2,m are

the empirical distribution functions of the first and second samples of size m and n
respectively, for the rth replica and R is the number of replicas.
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KAPPA

SPDIF MCC GM F1

CSI SGS SSI FAITH

AUC ACC TPR TNR
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Figure 5: Empirical cumulative distribution function of metrics for logit and PC link in
imbalanced data, to α = 3 (p = 0.15) and n = 5000.
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Figure 6: Empirical cumulative distribution function of metrics for logit and PC link in
imbalanced data, to α = 0.25 (p = 0.76) and n = 5000.
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Table 7: Kolmogorov test (KT) with p-value (p.val) between the metrics of the PC and logistic
links for imbalanced data

Metric

α = 3(p = 0.15) α = 0.25(p = 0.76)

n = 5000 n = 10000 n = 5000 n = 10000

KT p.val KT p.val KT p.val KT p.val

AUC 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
ACC 0.470 0.000 0.710 0.000 0.670 0.000 0.870 0.000
TPR 0.800 0.000 0.900 0.000 0.730 0.000 0.910 0.000
TNR 0.710 0.000 0.860 0.000 0.820 0.000 0.940 0.000
CSI 0.610 0.000 0.680 0.000 0.710 0.000 0.890 0.000
SGS 0.800 0.000 0.900 0.000 0.430 0.000 0.640 0.000
SSI 0.610 0.000 0.680 0.000 0.710 0.000 0.890 0.000
FAITH 0.490 0.000 0.510 0.000 0.720 0.000 0.890 0.000
SPDIF 0.110 0.581 0.160 0.155 0.300 0.000 0.470 0.000
MCC 0.620 0.000 0.680 0.000 0.800 0.000 0.830 0.000
GM 0.790 0.000 0.910 0.000 0.860 0.000 0.950 0.000
F1 0.610 0.000 0.680 0.000 0.710 0.000 0.890 0.000
KAPPA 0.510 0.000 0.550 0.000 0.640 0.000 0.690 0.000
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Table 8: Proportion of times the metric chose the correct model on imbalanced data

Metric
α = 3(p = 0.15) α = 0.25(p = 0.76)

n = 5000 n = 10000 n = 5000 n = 10000

AUC 0% 0% 0% 0%
ACC 1% 0% 0% 0%
TPR 100% 100% 0% 0%
TNR 0% 0% 100% 100%
CSI 100% 100% 0% 0%
SGS 100% 100% 0% 0%
SSI 100% 100% 0% 0%
FAITH 100% 100% 0% 0%
SPDIF 54% 41% 26% 19%
MCC 100% 100% 100% 100%
GM 100% 100% 100% 100%
F1 100% 100% 0% 0%
KAPPA 100% 100% 100% 100%
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When select the right model for imbalanced data
The metrics AUC, ACC, TNR, and SPDIF , are not adequate to evaluate the
performance of the model with low proportion of sucess.
The metrics AUC, ACC, TPR, CSI, SGS, SSI, FAITH, SPDIF and F1,
are not adequate to evaluate the performance of the model with high proportion of
success.
The metrics TPR, CSI, SGS, SSI, FAITH, MCC, GM, F1 and KAPPA are
adequate to evaluate the performance of the model with low proportion of success.
The metrics TNR, MCC, GM, and KAPPA are adequate to evaluate the per-
formance of the model with high proportion of success.

The Geometric Mean (G-Mean) or GM is a metric that measures the balance between
classification performances on both the majority and minority classes.
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6. APPLICATION
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6. Application

The data set analyzed here is related to the Shill bidding, which is available in UCI
repository (DUA; TANISKIDOU, 2017).

Shill bidding is when a seller uses a fraudulent account to bid on their bidding and
artificially increase the bidding price (ALZAHRANI; SADAOUI, 2018).
The auctioneers can be classified in normal or suspicious behavior, this classification
will be considered as a response variable

Y = 0 if the auctioneer has normal behavior
Y = 1, if the auctioneer is suspicious.

In addition to the response variable, the data set contains 9 attributes, but only 4
were considered, where all are numerical.

The proportion of ones is 10.7%, so the dataset is imbalanced.
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The original data set contains 6331 observations and was divided into 2 subsets
Training data set: 75% of the data was used to estimate the models.
Test data set: 25% of the data were used to make predictions from the estimated
model with the training data.
The Training data set were used to estimate the parameters on the models and
then predictions were made using Test data set data
Since that low proportion was observed we fit the different Power links studied here
with the training data set
By considering the estimated of the training we use it with the test data set to
obtain an optimal Threshold using Cohen’s kappa.
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Table 9: Metrics of asymmetrical power links for Shill Bidding, for Test data set

Link

Metric L PL PN PC PRG PLA

TPR 0.972 0.945 0.740 1.000 0.978 0.956
CSI 0.838 0.818 0.713 0.858 0.843 0.824
SGS 0.954 0.911 0.667 1.000 0.963 0.928
SSI 0.721 0.692 0.554 0.751 0.728 0.700
FAITH 0.545 0.542 0.525 0.548 0.546 0.543
MCC 0.902 0.888 0.821 0.916 0.905 0.892
GM 0.976 0.962 0.858 0.989 0.979 0.967
F1 0.912 0.900 0.832 0.923 0.915 0.903
KAPPA 0.900 0.886 0.814 0.913 0.903 0.890
Threshold 0.285 0.446 0.358 0.125 0.256 0.453
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We use the metrics indicated to low proportions following the previous study
By considering the metrics the best model was the Binary regression using PC link
The regression coefficients are showed on the next slide
Note that the credible interval for the shape parameter do not include the value 1
and this is upper 1, indicating that this parameter explain the unbalancing on the
data.
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Table 10: Posterior parameter estimation for the binary response model with a PC link for Shill
Bidding data

Variable Parameter Estimate SD 95% IC

Intercept β1 -13.925 3.467 (-20.994; -7.631)
Bidder Tendency β2 2.045 0.597 (0.931; 3.287)
successive Outbidding β3 9.891 2.264 (5.366; 14.060)
Winning Ratio β4 5.303 1.209 (3.017; 7.707)
Auction Duration β5 1.108 0.414 (0.379; 1.993)
Shape parameter α 5.9306 1.1467 (3.077; 7.339)
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Table 11: Posterior parameter estimation for the binary response model with a Logistic link for
Shill Bidding data

Variable Parameter Estimate SD 95% IC

Intercept β1 -7.014 0.500 (-8.057; -6.070)
Bidder Tendency β2 0.271 0.104 (0.064; 0.471)
successive Outbidding β3 3.097 0.179 (2.763; 3.460)
Winning Ratio β4 2.603 0.314 (1.993; 3.227)
Auction Duration β5 0.223 0.130 (-0.020; 0.486)
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7. FINAL REMARKS
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7. Final remarks
We show that asymmetry and kurtosis of Power and Reversal power distributions
depend on α. They produce different possible links for binary regression.
Our first simulation study showed that on the presence of unbalancing data, the
Logistic link and corrections of this links are no appropriated (bias on the intercept).
Then asymmetrical links can be a good alternative for this data separating the
effect of the intercept with the effect of the curve associated with the shape of the
distribution.
Our second simulation study showed that some commonly used metrics for binary
classification (AUC, ACC, and TNR) may not be the most adequate to choose the
best model when the data is imbalanced. Other metrics can be recommendable
depending if the we have lower or higher observed proportions of ones.
In the application it was shown that according to the appropriate metrics for im-
balanced data, a model with a power link presented better performance to describe
the Shill Bidding data set.
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The properties studied in this work, show that P and RP links are good alternatives
for imbalanced binary classification problems.
Extensions for Binomial regression, Mixed regression models and Item Response
Theory of some of this links had been studied recently in Alves, Bazán and Arellano-
Valle (2023), Huayanay, Bazán and Deniz (2023) and Bazán et al. (2023) respec-
tively.
New estimation methods are necessaries for the the estimation of binary regression
with asymmetrical links can be more quickly in High dimension data sets.
Other kind of priors as the studied in Ordoñez et al. (2023) can be considered for
the α parameter.
We are conducting studies comparing the performance of asymmetrical links in
binary regression with some classification algorithms as Naive Bayes, K-Nearest
Neighbors, Decision Tree, Support Vector Machines and Random forest.
We are planing studies comparing the performance of asymmetrical links in binary
regression with some strategies of re-sampling and cross-validation.
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I still don’t understand this concept but everybody is invited to work to became it
understandable!.

MUITO OBRIGADO!

Interested in our Program? visit <https://www.pipges.ufscar.br>

https://www.pipges.ufscar.br
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