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Chilean women pregnancies data

(β-HCG hormone)

De la Cruz et al. (2011) and De la Cruz et al. (2016)

➤ They analyzed data from a clinical study on the risk of loss in a group of
pregnant Chilean women.

➤ They model the association between a binary outcome (pregnancy outcome)
and features of longitudinal measurements (hormone levels) through a com-
mon set of latent random effects in 173 women during the first trimester
using different modeling strategies.

➤ These women were classified into two groups:

➤ Normal group (124 women who came to term with their
pregnancy).

➤ Abnormal group (49 women who suffered a loss).

➤ They are unbalanced data that fluctuate between 1 to 6 observations, having
a total of 375 observations.
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Chilean women pregnancies data
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Figure 1: Observed profiles log10(β − HCG).
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Chilean women pregnancies data
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Figure 2: Observed profiles of log10(β − HCG) for normal (left panel), and abnormal groups

(right panel).
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Radboudumc women pregnancies data

Gestational Trophoblastic Diseases (GTD)

Dandis et al. (2020)

➤ They analyzed data from the Dutch Central Registry for Hydatidiform Moles
at the Radboud University Medical Center (Radboudumc) in Nijmegen.

➤ They propose four approaches (2SMLE, JMMLE, 2SB, JMB) to predict the
risk of a future binary outcome (presence gestational trophoblastic neoplasia
(GTN)) based on a repeatedly measured predictor (serum levels of human
chorionic gonadotropin (hCG)) in 439 women in a period of two to seven
weeks.

➤ These women were classified into two groups:

➤ Unevenful group (299 women).
➤ GTN group (140 women with chronic gestacional

trophoblastic neoplasia).

➤ The data fluctuate between 1 to 6 observations, having a total of 1674 ob-
servations.
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Radboudumc women pregnancies data
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Figure 3: Observed profiles log−transformed(hCG).
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Radboudumc women pregnancies data
Uneventful group GTN group

2 3 4 5 6 7 2 3 4 5 6 7

0

1

2

3

4

Time (week)

lo
g−

tra
ns

fo
rm

ed
(h

C
G

)

Figure 4: Observed profiles of log−transformed(hCG): on the left panel is the uneventful group;

and on the right panel, the group who experience GTN.
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Introduction

We propose:

➤ A a joint model based on an NLME model for the longitudinal part taking
several random effects as covariates in a submodel GLM for the primary
response of interest (De la Cruz et al., 2016; Dandis et al., 2020).

➤ The resulting joint model (NLME/GLM) is estimated using a new estima-
tion method based on the likelihood, employing a stochastic approximation
version of the EM algorithm, the so-called SAEM algorithm (Delyon et al.,
1999; Kuhn and Lavielle, 2005).

➤ We made classification into two groups.
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Joint Model (longitudinal part)

Let yij, the measured concentration of the hormone for the i-th woman
at time tij.

NLME
yij = µ(tij;ϕi) + ν(tij,ϕi, ξ)εij, 1 ≤ i ≤ N, 1 ≤ j ≤ ni (1)
ϕi = Xijβ +Wijβi, βi ∼ N(0,Σ),

➤ β is a vector unknown fixed effects parameters.

➤ βi is a vector unobservable random effects.

➤ µ is a nonlinear function.

➤ ϵij ∼ N(0, σ2), βi and εij’s are mutually independent.

➤ ν(·) is a function that models the variability of the residual error which
depends on some additional vector of parameters ξ.
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Joint Model (longitudinal part)

Consider the case where the function ν is expressed as a function of
the structural model µ, i.e.,

ν(tij,ϕi, ξ) = ν(µ(tij,ϕi), ξ),

And so it is:

yij = µ
(
tij;ϕi

)
+ ν(µ(tij,ϕi), ξ)ϵij. (2)
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Joint Model (variability of the residual error)

➤ Residual Error Model I (REM I): y = µ + aϵ. Where the function ν is
constant, and the additional parameter is ξ = a.

➤ Residual Error Model II (REM II): y = µ + bµcϵ. Such that, the function
ν is proportional to the structural model µ, and the additional parameters
are ξ = (b, c). By default, the parameter c is fixed at 1 and the additional
parameter is ξ = b.

➤ Residual Error Model III (REM III): y = µ+(a+bµc)ϵ. In the case, function
ν is a linear combination of a constant term and a term proportional to the
structural model µ, and the additional parameters are ξ = (a, b) (by default,
the parameter c is fixed at 1).

➤ Residual Error Model IV (REM IV): y = µ+
√

(a2 + b2µ2c)ϵ. The function ν
is a combination of a constant term and a term proportional to the structural
model µ (ν = bµc), and the additional parameters are ξ = (a, b) (by default,
the parameter c is fixed at 1).
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Joint Model (binary part)

We consider a primary response observed Di for the i-th individual.

This primary response and the random effects are related through a
GLM such that the distribution of Di given βi is:

P
(
Di|βi; θ

)
= exp

{
Di

(
η′βi

)
− α2

(
η′βi

)
α1 (τ)

+ α3 (Di, τ)
}
, (3)

➤ θ = (η′, τ) such that η′ is the parameter of primary interest, τ is a dispersion
parameter.

➤ α1(·), α2(·) and α3(·) are known functions.
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Model Formulation Motivation Model Formulation Application 1 Results 1 Application 2 Results 2 Final Comments Acknowledgements References References

Joint Model (binary part)

As discussed Wang et al. (2000), we can further assume that yij and
Di are conditionally independent given βi,

P
(
yij,Di,βi

)
= P

(
yij,Di|βi

)
P

(
βi

)
(4)

= P
(
yij|βi

)
P

(
Di|βi

)
P

(
βi

)
,

➤ P(yij|βi) is the normal density function of yij|βi.

➤ P(Di|βi) is the Bernoulli distribution of Di|βi.

➤ P(βi) is the normal density function of βi.
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Joint Model (Likelihood)

The log-likelihood for the joint model
(
yij,Di

)
is given by

L (θ|y,D) =
N∑

i=1

log
∫
Rq

P
(
yij|βi

)
P

(
Di|βi

)
P

(
βi

)
dβi, (5)

where y =
(
y1j, . . . , yNj

)
wich 1 ≤ j ≤ ni and D = (D1, . . . ,DN).
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Estimation via SAEM algorithm
For the non-observed data ψ = βi and the observed data Y = (yij,Di), the like-
lihood (Y , ψ; θ) was maximized with respect to θ using the SAEM algorithm
(Delyon et al., 1999; Kuhn and Lavielle, 2004). This algorithm replaces the usual
E-step of EM by a stochastic procedure.

It is a robust alternative to Lindstrom and Bates (1990) algorithm (nlme library in
R) and implementation can be found in the R package saemix or in the Monolix
software (https://lixoft.com/).

Then, at iteration k, the SAEM algorithm proceeds as follows:

➤ Simulation step: draw ψ(k) from the conditional distribution p(·|Y , θ(k)).

➤ Stochastic approximation step: update Qk(θ) according to:

Qk(θ) = Qk−1(θ) + λk
(
log ℓ(Y ,ψ; θ) − Qk, (θ)

)
,

where Qk(θ) = E
[
log ℓ(Y ,ψ; θ)|Y , θ(k−1)

]
and λk is a parameter used to

accelerate convergence (Kuhn and Lavielle, 2005).

➤ Maximization step: updated θ(k) according to

θ(k+1) = arg max
θ

Qk(θ).

Márquez, M. et al. Classification joint model and SAEM Workshop 2023 15/32
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Estimation via SAEM algorithm

Kuhn and Lavielle (2005) propose to combine the SAEM with a
Markov chain Monte Carlo (MCMC) procedure when the simula-
tion step cannot be directly performed, as for instance in the NLME.
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Prediction of miscarriage in first trimester by serum β-HCG

The representation of the β-HCG levels for the i-th woman is:

yij =
ai

1 + exp
[
−(tij − bi)/θ

] + ν(µ(tij,ϕi), ξ)ϵij, 1 ≤ i ≤ N, 1 ≤ j ≤ ni,

(6)

yij =
ai

1 + exp
[
−(tij − bi)/ci

]+ν(µ(tij,ϕi), ξ)ϵij, 1 ≤ i ≤ N, 1 ≤ j ≤ ni,

(7)

We consider that the random effects ϕi follow a normal distribution
with mean µ = (apop, bpop, cpop) and variance-covariance matrix Γ =
diag(σ2

a, σ
2
b, σ

2
c).

Márquez, M. et al. Classification joint model and SAEM Workshop 2023 17/32
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Prediction of miscarriage in first trimester by serum β-HCG

We also consider the longitudinal model with log-normal random
effects.

yij =
ai

1 + exp
[
−(tij − bi)/ci

]+ν(µ(tij,ϕi), ξ)ϵij, 1 ≤ i ≤ N, 1 ≤ j ≤ ni,

(8)

log(ai) = log(apop) + ηi1, where ηi1 ∼ N(0, σ2
a)

log(bi) = log(bpop) + ηi2, where ηi2 ∼ N(0, σ2
b)

log(ci) = log(cpop).

And ν(µ(tij,ϕi), ξ) denotes the error structure according to REM I,
REM II, REM III, and REM IV.
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Prediction of miscarriage in first trimester by serum β-HCG

We consider the problem of predicting a loss (abnormal pregnancy)
in the set of pregnant women.

Let D = {0, 1} denote normal and abnormal pregnancy outcomes,
respectively,

The relationship between pregnancy outcomes and the asymptotic
levels of β-HCG, follow the primary logistic regression models:

P (Di = 1|ai) =
1

1 + exp {− (η0 + η1ai)}
. (9)

And

P (Di = 1|ai, bi) =
1

1 + exp {− (η0 + η1ai + η2bi)}
(10)
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Results 1

Joint Model Model
(7)-(9)

Model
(6)-(10)

Model
(8)-(10)

Parameters Estimate S.E R.S.E (%) Estimate S.E R.S.E (%) Estimate S.E R.S.E (%)
apop 4.5534 0.05412 1.19 4.5403 0.0512 1.13 4.5456 0.04916 1.08
bpop 15.6772 0.527 3.36 15.6176 0.545 3.49 15.6176 0.5733 3.82
cpop 7.2885 0.5171 7.09 6.9984 0.4153 5.93 7.1844 0.4638 6.45
η0pop 32.0155 12.7417 39.8 28.2743 10.1912 36.00 46.9476 74.805 159
η1pop −7.3993 2.8773 38.9 −6.5697 2.2996 35 −11.0641 16.8676 152
η2pop − − − 2.63E − 07 0.001601 6.09E + 05 0.08916 0.108 121
SD of the Random Effects
ωa 0.4952 0, 0679 13, 7 0.4682 0.04066 8.68 0.07939 0.01423 17.9
ωb 3, 604 1, 7918 49, 7 4.354 0.4352 10 9.7835 0.02983 10.5
ωc 1, 884 0, 7472 39, 7 − − − − − −

Error Model Parameters
a 0.2537 0.03008 11.9 0.2659 0.01825 6.86 0.2999 0.02639 8.8

−2 × log − likelihood 657.2478 660, 902 669.4938
AIC 675.2478 678.902 687, 4938
BIC 703, 6274 707.2817 715, 8734
BICc 710, 5453 715.3525 723, 9443

Table 1: Parameter estimates for the pregnant women data using the SAEM algorithm .
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Results 1

Group Model
(7)-(9)

Model
(6)-(10)

Model
(8)-(10)

Total

Normal Abnormal Normal Abnormal Normal Abnormal Total (173)
Within sample

Normal 123 1 123 1 124 0 124

Abnormal 9 40 10 39 8 41 49

Leave-one-out CV
Normal 124 0 124 0 124 0 124

Abnormal 8 41 2 47 3 46 49

Table 2: Classification in two groups using the SAEM algorithm.
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Results 1

AccuracyMetrics
Metrics Model (7)-(9)
Error rate 0.058
Sensitivity 0.992
Specificity 0.816
Precision 0.932
Accuracy 0.942

Table 3: Accuracy metrics for the joint model (7)-(9) estimated using the SAEM algorithm.
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Predictions of post–molar gestational trophoblastic neoplasia

Let log(hCG)ij represent the log-transformed hCG longitudinal mea-
surements for patient i, i = 1, . . . , 439, at week tij = 2, . . . , 7 and at
the age AGEi. The model for the first part can be written as follows:

log(hCG)ij = µ(bi, tij) + ν(µ(tij,ϕi), ξ)εij (11)

where

µ(tij,ϕi) = ai + bi × tij

ϕi = (ai, bi)T ∼ N(µϕ,Γ) with µϕ =
(

apop

bpop

)
and Γ =

(
σ2

a σab

σab σ2
b

)
εij ∼ N(0, σ2)

and ν(µ(tij,ϕi), ξ) denotes the error structure according to REM I,
REM II, REM III, and REM IV.
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Predictions of post–molar gestational trophoblastic neoplasia

The second model considers here use as predictors in a logistic re-
gression model with the status of GTN as the outcome:

logit (P (GTNi = 1)) = α0 + α1 × ai + α2 × bi + α3 × AGEi, (12)

where GTNi reflects the GTN status of the i-th patient, and α =
[α0, α1, α2, α3] is the vector of the logistic regression coefficients.
The coefficients α1 and α2 reflect the strength of association between
the two models.
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Results 2

Joint Model Model 11-12
Residual Error Model REM

I

Model 11-12
Residual Error Model REM

IV
Parameters Estimate S.E R.S.E (%) Estimate S.E R.S.E (%)
apop 2.5 0.034 1.34 2.50 0.034 1.36
bpop −0.22 0.0096 4.47 −0.22 0.0094 4.36
α0 −1.66 1.51 90.8 −1.46 1.58 108
α1 1.77 0.43 24.0 1.78 0.44 24.6
α2 23.96 3.22 13.4 25.36 3.61 14.20
α3 0.025 0.028 110 0.026 0.028 108
Variance components
σa 0.59 0.03 5.03 0.6 0.03 4.99
σb 0.18 0.0078 4.28 0.18 0.0081 4.55
σab −0.091 0.061 67.2 −0.075 0.063 83.7

Error Model Parameters
a 0.19 0.0045 2.43 0.16 0.0064 3.88
b - - - 0.052 0.0067 12.9

−2 × log − likelihood 1838.78 1818.13
AIC 1858.78 1840.13
BIC 1899.63 1885.06
BICc 1910.63 1897.63

Table 4: Parameter estimates of the models predicting GTN status using the SAEM algorithm.
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Results 2

Group REM I REM IV Total

Within sample
GTN No GTN GTN No GTN Total (439)

GTN 121 19 122 18 140

No GTN 12 287 10 289 299

Leave-one-out CV
GTN No GTN GTN No GTN Total (439)

GTN 121 19 122 18 140

No GTN 13 286 12 287 299

Table 5: Classification of the patients based on the available hCG measurements using the SAEM

algorithm.
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Results 2

AccuracyMetrics
Metrics Model REM I Model REM IV
Error rate 0.0729 0.0683
Sensitivity 0.9377 0.9410
Specificity 0.903 0.9104
Precision 0.8643 0.8714
Accuracy 0.9271 0.9317

Table 6: Accuracy metrics for the joint model (11)-(12) with error
structure REM I, and REM IV estimated using the SAEM algorithm.
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Final Comments

➤ We proposed joint models (NLME/GLM) with several random effects and
different distributions. Modeling different error structures.

➤ These models were estimated using the SAEM algorithm and we have
classified them into two groups.
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The end

Thank you!

”Nothing in life is to be feared.
It is only to be understood.

Now is the time to understand more,
so that we may fear less.”

Marie Curie
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