Classification using a joint model of longitudinal data and binary outcomes based on the SAEM algorithm

Maritza Márquez *, Cristian Meza, Claudio Fuentes, Rolando de la Cruz

*Universidad Adolfo Ibañez, Chile

June 14, 2023

Cristian Meza

cristian.meza@uv.cl CIMFAV - Universidad de Valparaíso Chile

Claudio Fuentes

fuentesc@oregonstate.edu Oregon State University, Corvallis USA

Rolando De la Cruz

rolando.delacruz@uai.cl Universidad Adolfo Ibañez Chile

Index

- 1 Motivation
- 2 Model Formulation
- 3 Application 1
- 4 Results 1
- **5** Application 2
- 6 Results 2
- 7 Final Comments
- 8 Acknowledgements

Motivation

(*B***-HCG** hormone)

De la Cruz et al. (2011) and De la Cruz et al. (2016)

- ▶ They analyzed data from a clinical study on the risk of loss in a group of pregnant Chilean women.
- \succ

> These women were classified into two groups:

>

$(\beta$ -HCG hormone)

De la Cruz et al. (2011) and De la Cruz et al. (2016)

- They analyzed data from a clinical study on the risk of loss in a group of pregnant Chilean women.
- ➤ They model the association between a binary outcome (pregnancy outcome) and features of longitudinal measurements (hormone levels) through a common set of latent random effects in 173 women during the first trimester using different modeling strategies.
- > These women were classified into two groups:
 - Normal group (124 women who came to term with their pregnancy).
 - ► Abnormal group (49 women who suffered a loss).

They are unbalanced data that fluctuate between 1 to 6 observations, having a total of **375** observations.

$(\beta$ -HCG hormone)

De la Cruz et al. (2011) and De la Cruz et al. (2016)

- They analyzed data from a clinical study on the risk of loss in a group of pregnant Chilean women.
- ➤ They model the association between a binary outcome (pregnancy outcome) and features of longitudinal measurements (hormone levels) through a common set of latent random effects in 173 women during the first trimester using different modeling strategies.
- ► These women were classified into two groups:
 - Normal group (124 women who came to term with their pregnancy).
 - ► Abnormal group (49 women who suffered a loss).
- They are unbalanced data that fluctuate between 1 to 6 observations, having a total of 375 observations.

(*B***-HCG** hormone)

De la Cruz et al. (2011) and De la Cruz et al. (2016)

- ▶ They analyzed data from a clinical study on the risk of loss in a group of pregnant Chilean women.
- > They model the association between a binary outcome (pregnancy outcome) and features of longitudinal measurements (hormone levels) through a common set of latent random effects in 173 women during the first trimester using different modeling strategies.

➤ These women were classified into two groups:

> Normal group (124 women who came to term with their pregnancy).

> Abnormal group (49 women who suffered a loss).

>

(*B***-HCG** hormone)

De la Cruz et al. (2011) and De la Cruz et al. (2016)

- ▶ They analyzed data from a clinical study on the risk of loss in a group of pregnant Chilean women.
- > They model the association between a binary outcome (pregnancy outcome) and features of longitudinal measurements (hormone levels) through a common set of latent random effects in 173 women during the first trimester using different modeling strategies.

➤ These women were classified into two groups:

- > Normal group (124 women who came to term with their pregnancy).
- ► Abnormal group (49 women who suffered a loss).

> They are unbalanced data that fluctuate between 1 to 6 observations, having

(*B***-HCG** hormone)

De la Cruz et al. (2011) and De la Cruz et al. (2016)

- ▶ They analyzed data from a clinical study on the risk of loss in a group of pregnant Chilean women.
- > They model the association between a binary outcome (pregnancy outcome) and features of longitudinal measurements (hormone levels) through a common set of latent random effects in 173 women during the first trimester using different modeling strategies.

➤ These women were classified into two groups:

> Normal group (124 women who came to term with their pregnancy).

► Abnormal group (49 women who suffered a loss).

They are unbalanced data that fluctuate between 1 to 6 observations, having a total of 375 observations.

Figure 1: Observed profiles $\log_{10}(\beta - HCG)$.

Figure 2: Observed profiles of $\log_{10}(\beta - HCG)$ for normal (left panel), and abnormal groups (right panel).

Radboudumc women pregnancies data

Gestational Trophoblastic Diseases (GTD)

- ➤ They analyzed data from the Dutch Central Registry for Hydatidiform Moles at the Radboud University Medical Center (Radboudumc) in Nijmegen.
- They propose four approaches (2SMLE, JMMLE, 2SB, JMB) to predict the risk of a future binary outcome (presence gestational trophoblastic neoplasia (GTN)) based on a repeatedly measured predictor (serum levels of human chorionic gonadotropin (hCG)) in 439 women in a period of two to seven weeks.
- These women were classified into two groups:
 - **Unevenful group** (299 women).
 - GTN group (140 women with chronic gestacional trophoblastic neoplasia).
- The data fluctuate between 1 to 6 observations, having a total of 1674 observations.

Motivation

Radboudumc women pregnancies data

Gestational Trophoblastic Diseases (GTD)

- They analyzed data from the Dutch Central Registry for Hydatidiform Moles at the Radboud University Medical Center (Radboudumc) in Nijmegen.
- ► They propose four approaches (2SMLE, JMMLE, 2SB, JMB) to predict the risk of a future binary outcome (presence gestational trophoblastic neoplasia (GTN)) based on a repeatedly measured predictor (serum levels of human chorionic gonadotropin (hCG)) in 439 women in a period of two to seven weeks.
- >
- >The data fluctuate between 1 to 6 observations, having a total of 1674 ob-

Motivation

Radboudumc women pregnancies data

Gestational Trophoblastic Diseases (GTD)

- They analyzed data from the Dutch Central Registry for Hydatidiform Moles at the Radboud University Medical Center (Radboudumc) in Nijmegen.
- ➤ They propose four approaches (2SMLE, JMMLE, 2SB, JMB) to predict the risk of a future binary outcome (presence gestational trophoblastic neoplasia (GTN)) based on a repeatedly measured predictor (serum levels of human chorionic gonadotropin (hCG)) in 439 women in a period of two to seven weeks.
- ► These women were classified into two groups:
 - Unevenful group (299 women).
 - GTN group (140 women with chronic gestacional
- >The data fluctuate between 1 to 6 observations, having a total of 1674 ob-

Motivation Motivation Model Formulation Application 1 Results 1 Application 2 Results 2 Final Comment

Radboudumc women pregnancies data

Gestational Trophoblastic Diseases (GTD)

- They analyzed data from the Dutch Central Registry for Hydatidiform Moles at the Radboud University Medical Center (Radboudumc) in Nijmegen.
- ➤ They propose four approaches (2SMLE, JMMLE, 2SB, JMB) to predict the risk of a future binary outcome (presence gestational trophoblastic neoplasia (GTN)) based on a repeatedly measured predictor (serum levels of human chorionic gonadotropin (hCG)) in 439 women in a period of two to seven weeks.
- ► These women were classified into two groups:
 - ► Unevenful group (299 women).
 - GTN group (140 women with chronic gestacional
- >The data fluctuate between 1 to 6 observations, having a total of 1674 ob-

Motivation Motivation Model Formulation Application 1 Results 1 Application 2 Results 2 Final Comment

Radboudumc women pregnancies data

Gestational Trophoblastic Diseases (GTD)

- They analyzed data from the Dutch Central Registry for Hydatidiform Moles at the Radboud University Medical Center (Radboudumc) in Nijmegen.
- ► They propose four approaches (2SMLE, JMMLE, 2SB, JMB) to predict the risk of a future binary outcome (presence gestational trophoblastic neoplasia (GTN)) based on a repeatedly measured predictor (serum levels of human chorionic gonadotropin (hCG)) in 439 women in a period of two to seven weeks.
- ► These women were classified into two groups:
 - ► Unevenful group (299 women).
 - ► GTN group (140 women with chronic gestacional trophoblastic neoplasia).
- >The data fluctuate between 1 to 6 observations, having a total of 1674 ob-

Motivation

Radboudumc women pregnancies data

Gestational Trophoblastic Diseases (GTD)

- They analyzed data from the Dutch Central Registry for Hydatidiform Moles at the Radboud University Medical Center (Radboudumc) in Nijmegen.
- ➤ They propose four approaches (2SMLE, JMMLE, 2SB, JMB) to predict the risk of a future binary outcome (presence gestational trophoblastic neoplasia (GTN)) based on a repeatedly measured predictor (serum levels of human chorionic gonadotropin (hCG)) in 439 women in a period of two to seven weeks.
- ► These women were classified into two groups:
 - ► Unevenful group (299 women).
 - ► GTN group (140 women with chronic gestacional trophoblastic neoplasia).
- ▶ The data fluctuate between 1 to 6 observations, having a total of 1674 observations.

Radboudumc women pregnancies data

Figure 3: Observed profiles log -*transformed*(*hCG*).

Márquez, M. et al.

Classification joint model and SAEM

Radboudumc women pregnancies data

Figure 4: Observed profiles of \log –*transformed*(*hCG*): on the left panel is the uneventful group; and on the right panel, the group who experience GTN.

Márquez, M. et al.

Classification joint model and SAEM

Introduction

We propose:

- A a joint model based on an NLME model for the longitudinal part taking several random effects as covariates in a submodel GLM for the primary response of interest (De la Cruz et al., 2016; Dandis et al., 2020).
- The resulting joint model (NLME/GLM) is estimated using a new estimation method based on the likelihood, employing a stochastic approximation version of the EM algorithm, the so-called SAEM algorithm (Delyon et al., 1999; Kuhn and Lavielle, 2005).
- ► We made classification into two groups.

Model Formulation

Model Formulation Model Formulation Application 1 Results 1 Application 2 Results 2 Final Comment Joint Model (longitudinal part)

Let y_{ij} , the measured concentration of the hormone for the *i*-th woman at time t_{ij} .

NLME

 $y_{ij} = \mu(t_{ij}; \boldsymbol{\phi}_i) + \nu(t_{ij}, \boldsymbol{\phi}_i, \xi) \varepsilon_{ij}, \quad 1 \le i \le N, \quad 1 \le j \le n_i \quad (1)$ $\boldsymbol{\phi}_i = \boldsymbol{X}_{ij} \boldsymbol{\beta} + \boldsymbol{W}_{ij} \boldsymbol{\beta}_i, \quad \boldsymbol{\beta}_i \sim \mathcal{N}(0, \boldsymbol{\Sigma}),$

- > β is a vector unknown fixed effects parameters.
- > β_i is a vector unobservable random effects.
- \blacktriangleright μ is a nonlinear function.
- $\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2), \beta_i$ and ε_{ij} 's are mutually independent.
- ν(·) is a function that models the variability of the residual error which depends on some additional vector of parameters ξ.

 Model Formulation
 Model Formulation
 Application 1
 Results 1
 Application 2
 Results 2
 Final Comment

 Joint Model (longitudinal part)
 Image: Comparent part (longitudinal part)
 Image: Comparent part (longitudinal part (longitudinal part))
 Image: Comparent part (longitudinal part (

Consider the case where the function ν is expressed as a function of the structural model μ , i.e.,

 $\nu(t_{ij}, \boldsymbol{\phi}_i, \boldsymbol{\xi}) = \nu(\mu(t_{ij}, \boldsymbol{\phi}_i), \boldsymbol{\xi}),$

And so it is:

$$y_{ij} = \mu\left(t_{ij}; \boldsymbol{\phi}_i\right) + \nu(\mu(t_{ij}, \boldsymbol{\phi}_i), \xi)\epsilon_{ij}.$$
(2)

 Model Formulation
 Motivation
 Model Formulation
 Application 1
 Results 1
 Application 2
 Results 2
 Final Comment

 Joint Model (variability of the residual error)
 Image: Comment
 <t

- Residual Error Model I (**REM I**): $y = \mu + a\epsilon$. Where the function ν is constant, and the additional parameter is $\xi = a$.
- ► Residual Error Model II (**REM II**): $y = \mu + b\mu^c \epsilon$. Such that, the function ν is proportional to the structural model μ , and the additional parameters are $\xi = (b, c)$. By default, the parameter *c* is fixed at 1 and the additional parameter is $\xi = b$.
- ► Residual Error Model III (**REM III**): $y = \mu + (a+b\mu^c)\epsilon$. In the case, function ν is a linear combination of *a* constant term and a term proportional to the structural model μ , and the additional parameters are $\xi = (a, b)$ (by default, the parameter *c* is fixed at 1).
- ► Residual Error Model IV (**REM IV**): $y = \mu + \sqrt{(a^2 + b^2 \mu^{2c})}\epsilon$. The function ν is a combination of a constant term and a term proportional to the structural model μ ($\nu = b\mu^c$), and the additional parameters are $\xi = (a, b)$ (by default, the parameter *c* is fixed at 1).

Joint Model (binary part)

We consider a primary response observed D_i for the *i*-th individual. This primary response and the random effects are related through a GLM such that the distribution of D_i given β_i is:

$$P(D_i|\boldsymbol{\beta}_i;\boldsymbol{\theta}) = \exp\left\{\frac{D_i(\eta'\boldsymbol{\beta}_i) - \alpha_2(\eta'\boldsymbol{\beta}_i)}{\alpha_1(\tau)} + \alpha_3(D_i,\tau)\right\},\qquad(3)$$

• $\theta = (\eta', \tau)$ such that η' is the parameter of primary interest, τ is a dispersion parameter.

►
$$\alpha_1(\cdot), \alpha_2(\cdot)$$
 and $\alpha_3(\cdot)$ are known functions.

Joint Model (binary part)

As discussed Wang et al. (2000), we can further assume that y_{ij} and D_i are conditionally independent given β_i ,

$$P(y_{ij}, D_i, \boldsymbol{\beta}_i) = P(y_{ij}, D_i | \boldsymbol{\beta}_i) P(\boldsymbol{\beta}_i)$$

$$= P(y_{ij} | \boldsymbol{\beta}_i) P(D_i | \boldsymbol{\beta}_i) P(\boldsymbol{\beta}_i),$$
(4)

- ► $P(y_{ij}|\beta_i)$ is the normal density function of $y_{ij}|\beta_i$.
- ► $P(D_i|\beta_i)$ is the Bernoulli distribution of $D_i|\beta_i$.
- ► $P(\beta_i)$ is the normal density function of β_i .

Joint Model (Likelihood)

The log-likelihood for the joint model (y_{ij}, D_i) is given by

$$\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{D}) = \sum_{i=1}^{N} \log \int_{\mathbb{R}^{q}} P(y_{ij}|\boldsymbol{\beta}_{i}) P(D_{i}|\boldsymbol{\beta}_{i}) P(\boldsymbol{\beta}_{i}) d\boldsymbol{\beta}_{i}, \quad (5)$$

where $y = (y_{1j}, ..., y_{Nj})$ wich $1 \le j \le n_i$ and $D = (D_1, ..., D_N)$.

Estimation via SAEM algorithm

For the non-observed data $\boldsymbol{\psi} = \boldsymbol{\beta}_i$ and the observed data $\boldsymbol{\mathcal{Y}} = (y_{ij}, D_i)$, the likelihood $(\boldsymbol{\mathcal{Y}}, \boldsymbol{\psi}; \theta)$ was maximized with respect to θ using the **SAEM algorithm** (Delyon et al., 1999; Kuhn and Lavielle, 2004). This algorithm replaces the usual E-step of EM by a stochastic procedure.

It is a robust alternative to Lindstrom and Bates (1990) algorithm (nlme library in R) and implementation can be found in the R package saemix or in the **Monolix** software (https://lixoft.com/).

Then, at iteration *k*, the SAEM algorithm proceeds as follows:

Simulation step: draw $\psi^{(k)}$ from the conditional distribution $p(\cdot|\mathcal{Y}, \theta^{(k)})$.

Stochastic approximation step: update Q_k(θ) according to:

 $Q_{k}(\theta) = Q_{k-1}(\theta) + \lambda_{k} \left(\log \ell(\boldsymbol{\mathcal{Y}}, \boldsymbol{\psi}; \boldsymbol{\theta}) - Q_{k}, (\boldsymbol{\theta}) \right),$

where $Q_k(\theta) = \mathbb{E}[\log \ell(\mathcal{Y}, \psi; \theta) | \mathcal{Y}, \theta_{(k-1)}]$ and λ_k is a parameter used to accelerate convergence (Kuhn and Lavielle, 2005).

> Maximization step: updated $\theta^{(k)}$ according to

 $\theta_{(k+1)} = \arg \max_{\alpha} Q_k(\theta).$

Estimation via SAEM algorithm

For the non-observed data $\boldsymbol{\psi} = \boldsymbol{\beta}_i$ and the observed data $\boldsymbol{\mathcal{Y}} = (y_{ij}, D_i)$, the likelihood $(\boldsymbol{\mathcal{Y}}, \psi; \theta)$ was maximized with respect to θ using the **SAEM algorithm** (Delyon et al., 1999; Kuhn and Lavielle, 2004). This algorithm replaces the usual E-step of EM by a stochastic procedure.

It is a robust alternative to Lindstrom and Bates (1990) algorithm (nlme library in R) and implementation can be found in the R package saemix or in the **Monolix** software (https://lixoft.com/).

Then, at iteration *k*, the SAEM algorithm proceeds as follows:

Simulation step: draw $\psi^{(k)}$ from the conditional distribution $p(\cdot | \mathcal{Y}, \theta^{(k)})$.

Stochastic approximation step: update $Q_k(\theta)$ according to:

 $Q_{k}(\theta) = Q_{k-1}(\theta) + \lambda_{k} \left(\log \ell(\boldsymbol{\mathcal{Y}}, \boldsymbol{\psi}; \boldsymbol{\theta}) - Q_{k}, (\boldsymbol{\theta}) \right),$

where $Q_k(\theta) = \mathbb{E}\left[\log \ell(\mathcal{Y}, \psi; \theta) | \mathcal{Y}, \theta_{(k-1)}\right]$ and λ_k is a parameter used to accelerate convergence (Kuhn and Lavielle, 2005).

Maximization step: updated $\theta^{(k)}$ according to

 $\theta_{(k+1)} = \arg \max_{\theta} Q_k(\theta).$

Estimation via SAEM algorithm

For the non-observed data $\boldsymbol{\psi} = \boldsymbol{\beta}_i$ and the observed data $\boldsymbol{\mathcal{Y}} = (y_{ij}, D_i)$, the likelihood $(\boldsymbol{\mathcal{Y}}, \psi; \theta)$ was maximized with respect to θ using the **SAEM algorithm** (Delyon et al., 1999; Kuhn and Lavielle, 2004). This algorithm replaces the usual E-step of EM by a stochastic procedure.

It is a robust alternative to Lindstrom and Bates (1990) algorithm (nlme library in R) and implementation can be found in the R package saemix or in the **Monolix** software (https://lixoft.com/).

Then, at iteration *k*, the SAEM algorithm proceeds as follows:

- Simulation step: draw $\psi^{(k)}$ from the conditional distribution $p(\cdot | \mathcal{Y}, \theta^{(k)})$.
- **Stochastic approximation step:** update $Q_k(\theta)$ according to:

 $Q_{k}(\theta) = Q_{k-1}(\theta) + \lambda_{k} \left(\log \ell(\boldsymbol{\mathcal{Y}}, \boldsymbol{\psi}; \boldsymbol{\theta}) - Q_{k}, (\boldsymbol{\theta}) \right),$

where $Q_k(\theta) = \mathbb{E} \left[\log \ell(\mathcal{Y}, \psi; \theta) | \mathcal{Y}, \theta_{(k-1)} \right]$ and λ_k is a parameter used to accelerate convergence (Kuhn and Lavielle, 2005).

Maximization step: updated $\theta^{(k)}$ according to

$$\theta_{(k+1)} = \arg \max_{\theta} Q_k(\theta).$$

Estimation via SAEM algorithm

For the non-observed data $\boldsymbol{\psi} = \boldsymbol{\beta}_i$ and the observed data $\boldsymbol{\mathcal{Y}} = (y_{ij}, D_i)$, the likelihood $(\boldsymbol{\mathcal{Y}}, \psi; \theta)$ was maximized with respect to θ using the **SAEM algorithm** (Delyon et al., 1999; Kuhn and Lavielle, 2004). This algorithm replaces the usual E-step of EM by a stochastic procedure.

It is a robust alternative to Lindstrom and Bates (1990) algorithm (nlme library in R) and implementation can be found in the R package saemix or in the **Monolix** software (https://lixoft.com/).

Then, at iteration *k*, the SAEM algorithm proceeds as follows:

- Simulation step: draw $\psi^{(k)}$ from the conditional distribution $p(\cdot | \mathcal{Y}, \theta^{(k)})$.
- **Stochastic approximation step:** update $Q_k(\theta)$ according to:

 $Q_{k}(\theta) = Q_{k-1}(\theta) + \lambda_{k} \left(\log \ell(\boldsymbol{\mathcal{Y}}, \boldsymbol{\psi}; \theta) - Q_{k}, (\boldsymbol{\theta}) \right),$

where $Q_k(\theta) = \mathbb{E} \left[\log \ell(\mathcal{Y}, \psi; \theta) | \mathcal{Y}, \theta_{(k-1)} \right]$ and λ_k is a parameter used to accelerate convergence (Kuhn and Lavielle, 2005).

• Maximization step: updated $\theta^{(k)}$ according to

$$\theta_{(k+1)} = \arg \max_{\theta} Q_k(\theta).$$

Estimation via SAEM algorithm

Kuhn and Lavielle (2005) propose to combine the SAEM with a Markov chain Monte Carlo (MCMC) procedure when the simulation step cannot be directly performed, as for instance in the NLME.

Application 1

Application 1Motivation Model Formulation Application 1 Results 1 Application 2 Results 2 Final CommentPrediction of miscarriage in first trimester by serum β -HCG

The representation of the β -HCG levels for the *i*-th woman is:

$$y_{ij} = \frac{a_i}{1 + \exp\left[-(t_{ij} - b_i)/\theta\right]} + \nu(\mu(t_{ij}, \phi_i), \xi)\epsilon_{ij}, \quad 1 \le i \le N, \quad 1 \le j \le n_i,$$
(6)
$$y_{ij} = \frac{a_i}{1 + \exp\left[-(t_{ij} - b_i)/c_i\right]} + \nu(\mu(t_{ij}, \phi_i), \xi)\epsilon_{ij}, \quad 1 \le i \le N, \quad 1 \le j \le n_i,$$
(7)

We consider that the random effects ϕ_i follow a normal distribution with mean $\mu = (a_{pop}, b_{pop}, c_{pop})$ and variance-covariance matrix $\Gamma = diag(\sigma_a^2, \sigma_b^2, \sigma_c^2)$.

Márquez, M. et al.

Classification joint model and SAEM

Application 1Motivation Model Formulation Application 1Results 1Application 2Results 2Final CommentPrediction of miscarriage in first trimester by serum β -HCG

We also consider the longitudinal model with log-normal random effects.

$$y_{ij} = \frac{a_i}{1 + \exp\left[-(t_{ij} - b_i)/c_i\right]} + \nu(\mu(t_{ij}, \phi_i), \xi)\epsilon_{ij}, \quad 1 \le i \le N, \quad 1 \le j \le n_i,$$
(8)

$$log(a_i) = log(a_{pop}) + \eta_{i1}, \text{ where } \eta_{i1} \sim N(0, \sigma_a^2)$$

$$log(b_i) = log(b_{pop}) + \eta_{i2}, \text{ where } \eta_{i2} \sim N(0, \sigma_b^2)$$

$$log(c_i) = log(c_{pop}).$$

And $\nu(\mu(t_{ij}, \phi_i), \xi)$ denotes the error structure according to **REM I**, **REM II**, **REM III**, and **REM IV**.

Márquez, M. et al.

Classification joint model and SAEM

Application 1Motivation Model Formulation Application 1Results 1Application 2Results 2Final CommentPrediction of miscarriage in first trimester by serum β -HCG

We consider the problem of predicting a loss (abnormal pregnancy) in the set of pregnant women.

Let $D = \{0, 1\}$ denote normal and abnormal pregnancy outcomes, respectively,

The relationship between pregnancy outcomes and the asymptotic levels of β -HCG, follow the primary logistic regression models:

$$\mathbb{P}(D_i = 1 | a_i) = \frac{1}{1 + \exp\{-(\eta_0 + \eta_1 a_i)\}}.$$
(9)

And

$$\mathbb{P}(D_i = 1 | a_i, b_i) = \frac{1}{1 + \exp\{-(\eta_0 + \eta_1 a_i + \eta_2 b_i)\}}$$
(10)

Joint Model		Model		1	Model			Model	
		(7)-(9)		(5)-(1 0)			(8)-(10)	
Parameters	Estimate	S.E	R.S.E (%)	Estimate	S.E	R.S.E (%)	Estimate	S.E	R.S.E (%)
apop	4.5534	0.05412	1.19	4.5403	0.0512	1.13	4.5456	0.04916	1.08
b_{pop}	15.6772	0.527	3.36	15.6176	0.545	3.49	15.6176	0.5733	3.82
c_{pop}	7.2885	0.5171	7.09	6.9984	0.4153	5.93	7.1844	0.4638	6.45
η_{0pop}	32.0155	12.7417	39.8	28.2743	10.1912	36.00	46.9476	74.805	159
η_{1pop}	-7.3993	2.8773	38.9	-6.5697	2.2996	35	-11.0641	16.8676	152
η_{2pop}	-	-	-	2.63E - 07	0.001601	6.09E + 05	0.08916	0.108	121
SD of the Random Effects									
ω_a	0.4952	0,0679	13,7	0.4682	0.04066	8.68	0.07939	0.01423	17.9
ω_b	3,604	1,7918	49,7	4.354	0.4352	10	9.7835	0.02983	10.5
ω_c	1,884	0,7472	39,7	-	-	-	-	-	-
Error Model Parameters									
a	0.2537	0.03008	11.9	0.2659	0.01825	6.86	0.2999	0.02639	8.8
$-2 \times \log - likelihood$	657 2478			660.902			669 4938		
AIC	675.2478			678.902			687, 4938		
BIC	703.6274			707.2817			715.8734		
BICc	710, 5453			715.3525			723,9443		

Table 1: Parameter estimates for the pregnant women data using the SAEM algorithm .

Results 1	Motivation	Model Formulation	Application 1	Results 1	Application 2	Results 2	Final Comment
Results 1							

Group	Model (7)-(9)		Model (6)-(10)		Model (8)-(10)		Total
	Normal	Abnormal	Normal	Abnormal	Normal	Abnormal	Total (173)
			Withi	n sample			
Normal	123	1	123	1	124	0	124
Abnormal	9	40	10	39	8	41	49
	Leave-one-out CV						
Normal	124	0	124	0	124	0	124
Abnormal	8	41	2	47	3	46	49

Table 2: Classification in two groups using the SAEM algorithm.

Accuracy Metrics				
METRICS	Model (7)-(9)			
Error rate	0.058			
Sensitivity	0.992			
Specificity	0.816			
Precision	0.932			
Accuracy	0.942			

Table 3: Accuracy metrics for the joint model (7)-(9) estimated using the SAEM algorithm.

Application 2

Application 2 Motivation Model Formulation Application 1 Results 1 Application 2 Results 2 Final Comment Predictions of post-molar gestational trophoblastic neoplasia

Let $log(hCG)_{ij}$ represent the log-transformed hCG longitudinal measurements for patient *i*, *i* = 1, ..., 439, at week $t_{ij} = 2, ..., 7$ and at the age *AGE_i*. The model for the first part can be written as follows:

$$\log(hCG)_{ij} = \mu(b_i, t_{ij}) + \nu(\mu(t_{ij}, \boldsymbol{\phi}_i), \xi)\varepsilon_{ij}$$
(11)

where

$$\mu(t_{ij}, \boldsymbol{\phi}_i) = a_i + b_i \times t_{ij}$$

$$\boldsymbol{\phi}_i = (a_i, b_i)^T \sim \mathcal{N}(\mu_{\phi}, \Gamma) \text{ with } \mu_{\phi} = \begin{pmatrix} a_{pop} \\ b_{pop} \end{pmatrix} \text{ and } \Gamma = \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix}$$

$$\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$$

and $\nu(\mu(t_{ij}, \phi_i), \xi)$ denotes the error structure according to **REM I**, **REM II**, **REM III**, and **REM IV**.

Márquez, M. et al.

Classification joint model and SAEM

The second model considers here use as predictors in a logistic regression model with the status of GTN as the outcome:

logit (P (GTN_i = 1)) = $\alpha_0 + \alpha_1 \times a_i + \alpha_2 \times b_i + \alpha_3 \times AGE_i$, (12)

where GTN_i reflects the GTN status of the *i*-th patient, and $\alpha = [\alpha_0, \alpha_1, \alpha_2, \alpha_3]$ is the vector of the logistic regression coefficients. The coefficients α_1 and α_2 reflect the strength of association between the two models.

Joint Model	Model 11-12			Model 11-12			
-	Residual Error Model REM			Residual Error Model REM			
		I		IV			
Parameters	Estimate	S.E	R.S.E (%)	Estimate	S.E	R.S.E (%)	
apop	2.5	0.034	1.34	2.50	0.034	1.36	
bpop	-0.22	0.0096	4.47	-0.22	0.0094	4.36	
α_0	-1.66	1.51	90.8	-1.46	1.58	108	
α_1	1.77	0.43	24.0	1.78	0.44	24.6	
α_2	23.96	3.22	13.4	25.36	3.61	14.20	
α ₃	0.025	0.028	110	0.026	0.028	108	
Variance components							
σ_a	0.59	0.03	5.03	0.6	0.03	4.99	
σ_b	0.18	0.0078	4.28	0.18	0.0081	4.55	
σ_{ab}	-0.091	0.061	67.2	-0.075	0.063	83.7	
Error Model Parameters							
a	0.19	0.0045	2.43	0.16	0.0064	3.88	
b	-	-	-	0.052	0.0067	12.9	
$-2 \times log - likelihood$	1838.78			1818.13			
AIC	1858.78			1840.13			
BIC	1899.63			1885.06			
BICc	1910.63			1897.63			

Table 4: Parameter estimates of the models predicting GTN status using the SAEM algorithm.

Márquez, M. et al.

Group	REM I		R	EM IV	Total
	Within sample				
	GTN	No GTN	GTN	No GTN	Total (439)
GTN	121	19	122	18	140
No GTN	12	287	10	289	299
		Leave-a			
	GTN	No GTN	GTN	No GTN	Total (439)
GTN	121	19	122	18	140
No GTN	13	286	12	287	299

 Table 5: Classification of the patients based on the available hCG measurements using the SAEM algorithm.

ACCURACY METRICS						
METRICS	Model REM I	Model REM IV				
Error rate	0.0729	0.0683				
Sensitivity	0.9377	0.9410				
Specificity	0.903	0.9104				
Precision	0.8643	0.8714				
Accuracy	0.9271	0.9317				

Table 6: Accuracy metrics for the joint model (11)-(12) with error structure **REM I**, and **REM IV** estimated using the SAEM algorithm.

Final Comments

Final Comments

- We proposed joint models (NLME/GLM) with several random effects and different distributions. Modeling different error structures.
- These models were estimated using the SAEM algorithm and we have classified them into two groups.

Acknowledgements

Acknowledgements

This work was funded by the Data Observatory Foundation, ANID Technology Center No. DO210001. This work was partially funded by grant ANID/PIA/ANILLOS ACT210096.

- Dandis, R., Teerenstra, S., Massuger, L., Sweep, F., Eysbouts, Y., and IntHout, J. (2020). A tutorial on dynamic risk prediction of a binary outcome based on a longitudinal biomarker. *Biometrical Journal*, 62(2):398–413.
- De la Cruz, R., Marshall, G., and Quintana, F. A. (2011). Logistic regression when covariates are random effects from a non-linear mixed model. *Biometrical journal*, 53(5):735–749.
- De la Cruz, R., Meza, C., Arribas-Gil, A., and Carroll, R. J. (2016). Bayesian regression analysis of data with random effects covariates from nonlinear longitudinal measurements. *Journal of multivariate analysis*, 143:94–106.
- Delyon, B., Lavielle, M., and Moulines, E. (1999). Convergence of a stochastic approximation version of the em algorithm. *Annals of statistics*, pages 94–128.
- Kuhn, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of em with an mcmc procedure. *ESAIM: Probability and Statistics*, 8:115–131.
- Kuhn, E. and Lavielle, M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. *Computational Statistics and Data Analysis*, 49(4):1020–1038.

- Lindstrom, M. J. and Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures data. *Biometrics*, pages 673–687.
- Wang, C., Wang, N., and Wang, S. (2000). Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements. *Biometrics*, 56(2):487–495.

Thank you!

"Nothing in life is to be feared. It is only to be understood. Now is the time to understand more, so that we may fear less."

Marie Curie